AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2

Tang Yang1,§Chengyong Yang1,2,§Jiabo Le1Zhiyong Yu2Lingzheng Bu1( )Leigang Li2Shuxing Bai2Qi Shao2Zhiwei Hu3Chih-Wen Pao4Jun Cheng1( )Yonggang Feng2Xiaoqing Huang1( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
Max-Planck-Institute for Chemical Physics of Solids, Nöthnitzer Street 40, Dresden 01187, Germany
“National Synchrotron Radiation Research Center”, Hsinchu 30076, Taiwan, China

§Tang Yang and Chengyong Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Although high-efficiency production of hydrogen peroxide (H2O2) can be realized separately by means of direct, electrochemical, and photocatalytic synthesis, developing versatile catalysts is particularly challenging yet desirable. Herein, for the first time we reported that palladium-sulphur nanocrystals (Pd-S NCs) can be adopted as robust and universal catalysts, which can realize the efficient O2 conversion by three methods. As a result, Pd-S NCs exhibit an excellent selectivity (89.5%) to H2O2 with high productivity (133.6 mol·kgcat−1·h−1) in the direct synthesis, along with the significantly enhanced H2O2 production activity and stability via electrocatalytic and photocatalytic syntheses. It is demonstrated that the isolated Pd sites can enhance the adsorption of O2 and inhibit its O–O bond dissociation, improving H2O2 selectivity and reducing H2O2 degradation. Further study confirms that the difference in surface atom composition and arrangement is the key factor for different ORR mechanisms on Pd NCs and Pd-S NCs.

References

1

Wilson, N. M.; Pan, Y. T.; Shao, Y. T.; Zuo, J. M.; Yang, H.; Flaherty, D. W. Direct synthesis of H2O2 on AgPt octahedra: The importance of Ag-Pt coordination for high H2O2 selectivity. ACS Catal. 2018, 8, 2880–2889.

2

Salmerón, I.; Plakas, K. V.; Sirés, I.; Oller, I.; Maldonado, M. I.; Karabelas, A. J.; Malato, S. Optimization of electrocatalytic H2O2 production at pilot plant scale for solar-assisted water treatment. Appl. Catal. B: Environ. 2019, 242, 327–336.

3

Verdaguer-Casadevall, A.; Deiana, D.; Karamad, M.; Siahrostami, S.; Malacrida, P.; Hansen, T. W.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Trends in the electrochemical synthesis of H2O2: Enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 2014, 14, 1603–1608.

4

Ye, Z. H.; Guelfi, D. R. V.; Álvarez, G.; Alcaide, F.; Brillas, E.; Sirés, I. Enhanced electrocatalytic production of H2O2 at Co-based air-diffusion cathodes for the photoelectro-Fenton treatment of bronopol. Appl. Catal. B: Environ. 2019, 247, 191–199.

5

De Faveri, G.; Ilyashenko, G.; Watkinson, M. Recent advances in catalytic asymmetric epoxidation using the environmentally benign oxidant hydrogen peroxide and its derivatives. Chem. Soc. Rev. 2011, 40, 1722–1760.

6

Lane, B. S.; Burgess, K. Metal-catalyzed epoxidations of alkenes with hydrogen peroxide. Chem. Rev. 2003, 103, 2457–2474.

7

Li, H. B.; Zheng, B.; Pan, Z. Y.; Zong, B. N.; Qiao, M. H. Advances in the slurry reactor technology of the anthraquinone process for H2O2 production. Front. Chem. Sci. Eng. 2018, 12, 124–131.

8

Iqbal, W.; Qiu, B. C.; Zhu, Q. H.; Xing, M. Y.; Zhang, J. L. Self-modified breaking hydrogen bonds to highly crystalline graphitic carbon nitrides nanosheets for drastically enhanced hydrogen production. Appl. Catal. B: Environ. 2018, 232, 306–313.

9

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

10

Liu, Y. M.; Quan, X.; Fan, X. F.; Wang, H.; Chen, S. High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem., Int. Ed. 2015, 54, 6837–6841.

11

Guo, Y. Y.; Dai, C. N.; Lei, Z. G.; Chen, B. H.; Fang, X. C. Synthesis of hydrogen peroxide over Pd/SiO2/COR monolith catalysts by anthraquinone method. Catal. Today 2016, 276, 36–45.

12

Kanungo, S.; Paunovic, V.; Schouten, J. C.; D’Angelo, M. F. N. Facile synthesis of catalytic AuPd nanoparticles within capillary microreactors using polyelectrolyte multilayers for the direct synthesis of H2O2. Nano Lett. 2017, 17, 6481–6486.

13

Melchionna, M.; Fornasiero, P.; Prato, M. The rise of hydrogen peroxide as the main product by metal-free catalysis in oxygen reductions. Adv. Mater. 2019, 31, 1802920.

14

Yang, S.; Verdaguer-Casadevall, A., Arnarson, L.; Silvioli, L.; Čolić, V.; Frydendal, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I. E. L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4064–4081.

15

Dong, K.; Lei, Y.; Zhao, H. T.; Liang, J.; Ding, P.; Liu, Q.; Xu, Z. Q.; Lu, S. Y.; Li, Q.; Sun, X. P. Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 2020, 8, 23123–23141.

16

Wang, Z.; Li, Q. K.; Zhang, C. H.; Cheng, Z. H.; Chen, W. Y.; Mchugh, E. A.; Carter, R. A.; Yakobson, B. I.; Tour, J. M. Hydrogen peroxide generation with 100% faradaic efficiency on metal-free carbon black. ACS Catal. 2021, 11, 2454–2459.

17

Wilson, N. M.; Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: Heterolytic reaction pathways at the liquid-solid interface. J. Am. Chem. Soc. 2016, 138, 574–586.

18

Lari, G. M.; Puértolas, B.; Shahrokhi, M.; López, N.; Pérez-Ramírez, J. Hybrid palladium nanoparticles for direct hydrogen peroxide synthesis: The key role of the ligand. Angew. Chem., Int. Ed. 2017, 56, 1775–1779.

19

Vu, H. T. T.; Vo, V. L. N.; Chung, Y. M. Geometric, electronic, and synergistic effect in the sulfonated carbon-supported Pd catalysts for the direct synthesis of hydrogen peroxide. Appl. Catal. A: Gen. 2020, 607, 117867.

20

Jin, Z.; Liu, Y. F.; Wang, L.; Wang, C. T.; Wu, Z. Y.; Zhu, Q. Y.; Wang, L. X.; Xiao, F. S. Direct synthesis of pure aqueous H2O2 solution within aluminosilicate zeolite crystals. ACS Catal. 2021, 11, 1946–1951.

21

Han, G. H.; Lee, S. H.; Hwang, S. Y.; Lee, K. Y. Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 2021, 2003121.

22

Jiang, Y. Y.; Ni, P. J.; Chen, C. X.; Lu, Y. Z.; Yang, P.; Kong, B.; Fisher, A.; Wang, X. Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 2018, 8, 1801909.

23

Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M. C.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.

24

Kim, J. S.; Kim, H. K.; Kim, S. H.; Kim, I.; Yu, T.; Han, G. H.; Lee, K. Y.; Lee, J. C.; Ahn, J. P. Catalytically active Au layers grown on Pd nanoparticles for direct synthesis of H2O2: Lattice strain and charge-transfer perspective analyses. ACS Nano 2019, 13, 4761–4770.

25

Lee, J. H.; Cho, H.; Park, S. O.; Hwang, J. M.; Hong, Y. R. N.; Sharma, P.; Jeon, W. C.; Cho, Y.; Yang, C.; Kwak, S. K. et al. High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl. Catal. B: Environ. 2021, 284, 119690.

26

Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y.; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.

27

Wu, S.; Yu, H. T.; Chen, S.; Quan, X. Enhanced photocatalytic H2O2 production over carbon nitride by doping and defect engineering. ACS Catal. 2020, 10, 14380–14389.

28

Chen, S. C.; Chen, Z. H.; Siahrostami, S.; Higgins, D.; Nordlund, D.; Sokaras, D.; Kim, T. R.; Liu, Y. Z.; Yan, X. Z.; Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

29

Burek, B. O.; Bahnemann, D. W.; Bloh, J. Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 2019, 9, 25–37.

30

Wang, F.; Xia, C. G.; de Visser, S. P.; Wang, Y. How does the oxidation state of palladium surfaces affect the reactivity and selectivity of direct synthesis of hydrogen peroxide from hydrogen and oxygen gases? A density functional study. J. Am. Chem. Soc. 2019, 141, 901–910.

31

Deschner, B. J.; Doronkin, D. E.; Sheppard, T. L.; Zimina, A.; Grunwaldt, J. D.; Dittmeyer, R. Effect of selectivity enhancers on the structure of palladium during high-pressure continuous-flow direct synthesis of hydrogen peroxide in ethanol. J. Phys. Chem. C 2021, 125, 3451–3462.

32

Cai, H. Z.; Chen, B. B.; Zhang, X.; Deng, Y. C.; Xiao, D. Q.; Ma, D.; Shi, C. Highly active sites of low spin FeIIN4 species: The identification and the ORR performance. Nano Res. 2021, 14, 122–130.

33

Ding, R.; Liu, Y. D.; Rui, Z. Y.; Li, J.; Liu, J. G.; Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

34

Lu, Y. Z.; Wang, J.; Peng, Y. C.; Fisher, A.; Wang, X. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction. Adv. Energy Mater. 2017, 7, 1700919.

35

Bu, L. Z.; Feng, Y. G.; Yao, J. L.; Guo, S. J.; Guo, J.; Huang, X. Q. Facet and dimensionality control of Pt nanostructures for efficient oxygen reduction and methanol oxidation electrocatalysts. Nano Res. 2016, 9, 2811–2821.

36

Zhou, R. F.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Determination of the electron transfer number for the oxygen reduction reaction: From theory to experiment. ACS Catal. 2016, 6, 4720–4728.

37

Freakley, S. J.; He, Q.; Harrhy, J. H.; Lu, L.; Crole, D. A.; Morgan, D. J.; Ntainjua, E. N.; Edwards, J. K.; Carley, A. F.; Borisevich, A. Y. et al. Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 2016, 351, 965–968.

38

Xu, H. X.; Cheng, D. J.; Gao, Y.; Zeng, X. C. Assessment of catalytic activities of gold nanoclusters with simple structure descriptors. ACS Catal. 2018, 8, 9702–9710.

39

Yi, Y. H.; Xu, C.; Wang, L.; Yu, J.; Zhu, Q. R.; Sun, S. Q.; Tu, X.; Meng, C. G.; Zhang, J. L.; Guo, H. C. Selectivity control of H2/O2 plasma reaction for direct synthesis of high purity H2O2 with desired concentration. Chem. Eng. J. 2017, 313, 37–46.

40

Gong, X. X.; Lewis, R. J.; Zhou, S.; Morgan, D. J.; Davies, T. E.; Liu, X.; Kiely, C. J.; Zong, B. N.; Hutchings, G. J. Enhanced catalyst selectivity in the direct synthesis of H2O2 through Pt incorporation into TiO2 supported AuPd catalysts. Catal. Sci. Technol. 2020, 10, 4635–4644.

41

Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanoparticles. ACS Catal. 2012, 2, 599–603.

42

Choi, C. H.; Kim, M.; Kwon, H. C.; Cho, S. J.; Yun, S.; Kim, H. T.; Mayrhofer, K. J. J.; Kim, H.; Choi, M. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 2016, 7, 10922.

43

Yang, S.; Kim, J.; Tak, Y. J.; Soon, A.; Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem., Int. Ed. 2016, 55, 2058–2062.

44

Shen, R. A.; Chen, W. X.; Peng, Q.; Lu, S. Q.; Zheng, L. R.; Cao, X.; Wang, Y.; Zhu, W.; Zhang, J. T.; Zhuang, Z. B. et al. High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution. Chem 2019, 5, 2099–2110.

45

Feng, Y. G.; Yang, C. Y.; Fang, W.; Huang, B. L.; Shao, Q.; Huang, X. Q. Antipoisonedoxygen reduction by the interface modulated Pd@NiO core@shell. Nano Energy 2019, 58, 234–243.

46

Zhang, J.; Qiao, M.; Li, Y. F.; Shao, Q.; Huang, X. Q. Highly active and selective electrocatalytic CO2 conversion enabled by core/shell Ag/(amorphous-Sn(IV)) nanostructures with tunable shell thickness. ACS Appl. Mater. Interfaces 2019, 11, 39722–39727.

47

Zhang, J. B.; Xu, W. W.; Xu, L.; Shao, Q.; Huang, X. Q. Concavity tuning of intermetallic Pd-Pb nanocubes for selective semihydrogenation catalysis. Chem. Mater. 2018, 30, 6338–6345.

48

Cao, K. L.; Yang, H.; Bai, S. X.; Xu, Y.; Yang, C. Y.; Wu, Y.; Xie, M.; Cheng, T.; Shao, Q.; Huang, X. Q. Efficient direct H2O2 synthesis enabled by PdPb nanorings via inhibiting the O−O bond cleavage in O2 and H2O2. ACS Catal. 2021, 11, 1106–1118.

49

Xu, Y.; Bian, W. Y.; Pan, Q.; Chu, M. Y.; Cao, M. H.; Li, Y. Y.; Gong, Z. M.; Wang, R.; Cui, Y.; Lin, H. P. et al. Revealing the active sites of Pd nanocrystals for propyne semihydrogenation: From theory to experiment. ACS Catal. 2019, 9, 8471–8480.

50

Zeng, Y. Q.; Wang, T. X.; Zhang, S. L.; Wang, Y. N.; Zhong, Q. Sol-gel synthesis of CuO-TiO2 catalyst with high dispersion CuO species for selective catalytic oxidation of NO. Appl. Surf. Sci. 2017, 411, 227–234.

51

Wang, S. L.; Gao, K. G.; Li, W.; Zhang, J. L. Effect of Zn addition on the direct synthesis of hydrogen peroxide over supported palladium catalysts. Appl. Catal. A: Gen. 2017, 531, 89–95.

52

Gao, F.; Wang, L. Y.; Goodman, D. W. CO oxidation over AuPd(100) from ultrahigh vacuum to near-atmospheric pressures: The critical role of contiguous Pd atoms. J. Am. Chem. Soc. 2009, 131, 5734–5735.

Nano Research
Pages 1861-1867
Cite this article:
Yang T, Yang C, Le J, et al. Atomically isolated Pd sites within Pd-S nanocrystals enable trifunctional catalysis for direct, electrocatalytic and photocatalytic syntheses of H2O2. Nano Research, 2022, 15(3): 1861-1867. https://doi.org/10.1007/s12274-021-3786-0
Topics:

743

Views

24

Crossref

21

Web of Science

22

Scopus

3

CSCD

Altmetrics

Received: 04 June 2021
Revised: 26 July 2021
Accepted: 01 August 2021
Published: 17 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return