AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries

Fangya GuoYongfan XieYouxiang Zhang( )
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

Abstract

With high reversible capacities of more than 200 mAh/g, Ni-rich layered oxides Li[NixCoyMn1–xy]O2 (x ≥ 0.6) serve as the most promising cathode materials for lithium-ion batteries (LIBs). However, the anisotropic lattice volume changes linked to their α-NaFeO2 structured crystal grains bring about poor cycle performances for conventionally produced NCM materials. To deal with these issue, single-crystal µm-sized LiNi0.8Co0.1Mn0.1O2 rods was synthesized by a hydrothermal method. Compared with conventional synthesis methods, these LiNi0.8Co0.1Mn0.1O2 rods were calcined at a low temperature with excessive lithium sources, which not only reduces the sintering temperature but also ensures the mono-dispersed micrometer-scaled particle distribution. When used as the cathode material for LIBs, the as-prepared LiNi0.8Co0.1Mn0.1O2, with ordered layered-structure and low degree of cation mixing, shows excellent electrochemical performances. When sintered at 750 °C with 50% Li-excess, the cathode material delivered an initial discharge capacity of 226.9 mAh/g with Coulombic efficiency of 91.2% at 0.1 C (1 C = 200 mA/g) in the voltage range of 2.8‒4.3 V. When charge-discharged at 1 C for 100 cycles, discharge capacity of 178.1 mAh/g with the capacity retention of 95.1% are still obtained. The cycling stability at high cut-off voltage is also outstanding. These superior electrochemical properties should be related to the monodispersed micron scaled morphology which not only decreases the contact area between electrode and electrolyte but also mitigates the formation of microcracks. This low-temperature strategy of synthesizing single-crystal LiNi0.8Co0.1Mn0.1O2 rods should be able to provide a feasible method for synthesizing other single-crystal Ni-rich cathode materials with excellent electrochemical performances for LIB.

References

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

3

Zeng, X. Q.; Li, M.; El-Hady, D. A.; Alshitari, W.; Al-Bogami, A. A.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

4

Hu, W. H.; Zhang, Y. X.; Zan, L.; Cong, H. J. Mitigation of voltage decay in Li-rich layered oxides as cathode materials for lithium-ion batteries. Nano Res. 2020, 13, 151–159.

5

Voronina, N.; Sun, Y. K.; Myung, S. T. Co-free layered cathode materials for high energy density lithium-ion batteries. ACS Energy Lett. 2020, 5, 1814–1824.

6

Sun, D. P.; Tan, Z.; Tian, X. Z.; Ke, F.; Wu, Y. L.; Zhang, J. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021, in press.

7

Qian, R. C.; Liu, Y. L.; Cheng, T.; Li, P. P.; Chen, R. M.; Lyu Y.; Guo B. K. Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 13813–13823.

8

Ren, D.; Shen, Y.; Yang, Y.; Shen, L. X.; Levin, B. D. A.; Yu, Y. C.; Muller, D. A.; Abruña, H. D. Systematic optimization of battery materials: Key parameter optimization for the scalable synthesis of uniform, high-energy, and high stability LiNi0.6Mn0.2Co0.2O2 cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 35811–35819.

9

Zhang, S.; Ma, J.; Hu, Z. L.; Cui G. L.; Chen L. Q. Identifying and addressing critical challenges of high-voltage layered ternary oxide cathode materials. Chem. Mater. 2019, 31, 6033–6065.

10

Lee, W.; Muhammad, S.; Kim, T.; Kim, H.; Lee, E.; Jeong, M.; Son, S.; Ryou, J. H.; Yoon, W. S. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries. Adv. Energy Mater. 2018, 8, 1701788.

11

Lee, M. H.; Kang, Y. J.; Myung, S. T.; Sun, Y. K. Synthetic optimization of Li [Ni1/3Co1/3Mn1/3] O2 via co-precipitation. Electrochim. Acta 2004, 50, 939–948.

12

Van Bommel, A.; Dahn, J. R. Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem. Mater. 2009, 21, 1500–1503.

13

Lin, F.; Markus, I. M.; Nordlund, D.; Weng, T. C.; Asta, M. D.; Xin, H. L.; Doeff, M. M. Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries. Nat. Commun. 2014, 5, 3529.

14

Yan, P. F.; Zheng, J. M.; Gu, M.; Xiao, J.; Zhang, J. G.; Wang, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nat. Commun. 2017, 8, 14101.

15

Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gasteiger, H. A. Oxygen release and its effect on the cycling stability of LiNixMnyCozO2 (NMC) cathode materials for Li-ion batteries. J. Electrochem. Soc. 2017, 164, A1361–A1377.

16

Yang, C. K.; Qi, L. Y.; Zuo, Z. C.; Wang, R. N.; Ye, M.; Lu, J.; Zhou, H. H. Insights into the inner structure of high-nickel agglomerate as high-performance lithium-ion cathodes. J. Power Sources 2016, 331, 487–494.

17

Jung, S. K.; Gwon, H.; Hong, J.; Park, K. Y.; Seo, D. H.; Kim, H.; Hyun, J.; Yang, W.; Kang, K. Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv. Energy Mater. 2014, 4, 1300787.

18

Wu, K.; Jia, G. F.; Shangguan, X. H.; Yang, G. W.; Zhu, Z. H.; Peng, Z. J.; Zhuge, Q.; Li, F. Q.; Cui, X. L.; Liu, S. Q. Improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 by enlarging the Li layer spacing. Energy Technol. 2018, 6, 1885–1893.

19

Wang, Y. Y.; Sun, Y. Y.; Liu, S.; Li, G. R.; Gao, X. P. Na-doped LiNi0.8Co0.15Al0.05O2 with excellent stability of both capacity and potential as cathode materials for Li-ion batteries. ACS Appl. Energy Mater. 2018, 1, 3881–3889.

20

Wang, L. F.; Liu, G. Y.; Ding, X. N.; Zhan, C.; Wang, X. D. Simultaneous coating and doping of a nickel-rich cathode by an oxygen ion conductor for enhanced stability and power of lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 33901–33912.

21

Jiang, Y.; Bi, Y. J.; Liu, M.; Peng, Z.; Huai, L. Y.; Dong, P.; Duan, J. G.; Chen, Z. L.; Li, X.; Wang, D. Y. et al. Improved stability of Ni-rich cathode by the substitutive cations with stronger bonds. Electrochim. Acta 2018, 268, 41–48.

22

Becker, D.; Börner, M.; Nölle, R.; Diehl, M.; Klein, S.; Rodehorst, U.; Schmuch, R.; Winter, M.; Placke, T. Surface modification of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material by tungsten oxide coating for improved electrochemical performance in lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 18404–18414.

23

Lu, J.; Peng, Q.; Wang, W. Y.; Nan, C. Y.; Li, L. H.; Li, Y. D. Nanoscale coating of LiMO2(M=Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: Toward better rate capabilities for Li-ion batteries. J. Am. Chem. Soc. 2013, 135, 1649–1652.

24

Chen, S.; He, T.; Su, Y. F.; Li, Y.; Bao, L. Y.; Chen, L.; Zhang, Q. Y.; Wang, J.; Chen, R. J.; Wu, F. Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 29732–29743.

25

Cao, Y. B.; Qi, X. Y.; Hu, K. H.; Wang, Y.; Gan, Z. G.; Li, Y.; Hu, G. R.; Peng, Z. D.; Du, K. Conductive polymers encapsulation to enhance electrochemical performance of Ni-rich cathode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2018, 10, 18270–18280.

26

Jo, C. H.; Cho, D. H.; Noh, H. J.; Yashiro, H.; Sun, Y. K.; Myung, S. T. An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer. Nano Res. 2015, 8, 1464–1479.

27

Zhu, J.; Chen, G. Y. Single-crystal based studies for correlating the properties and high-voltage performance of Li[NixMnyCo1–x–y]O2 cathodes. J. Mater. Chem. A 2019, 7, 5463–5474.

28

Zhang, H. X.; Yang, S. Y.; Huang, Y. Y.; Hou, X. H. Synthesis of non-spherical LiNi0.88Co0.09Al0.03O2 cathode material for lithium-ion batteries. Energy Fuels 2020, 34, 9002–9010.

29

Chung, H.; Grenier, A.; Huang, R.; Wang, X. F.; Lebens-Higgins, Z.; Doux, J. M.; Sallis, S.; Song, C. Y.; Ercius, P.; Chapman, K. et al. Comprehensive study of a versatile polyol synthesis approach for cathode materials for Li-ion batteries. Nano Res. 2019, 12, 2238–2249.

30

Lai, Y. J.; Li, Z. J.; Zhao, W. X.; Cheng, X. N.; Xu, S.; Yu, X.; Liu, Y. An ultrasound-triggered cation chelation and reassembly route to one-dimensional Ni-rich cathode material enabling fast charging and stable cycling of Li-ion batteries. Nano Res. 2020, 13, 3347–3357.

31

Lee, S. W.; Kim, H.; Kim, M. S.; Youn, H. C.; Kang, K.; Cho, B. W.; Roh, K. C.; Kim, K. B. Improved electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material synthesized by citric acid assisted sol-gel method for lithium ion batteries. J. Power Sources 2016, 315, 261–268.

32

Li, J.; Cameron, A. R.; Li, H. Y.; Glazier, S.; Xiong, D. J.; Chatzidakis, M.; Allen, J.; Botton, G. A.; Dahn, J. R. Comparison of single crystal and polycrystalline LiNi0.5Mn0.3Co0.2O2 positive electrode materials for high voltage Li-ion cells. J. Electrochem. Soc. 2017, 164, A1534–A1544.

33

Idris, M. S.; West, A. R. The effect on cathode performance of oxygen non-stoichiometry and interlayer mixing in layered rock salt LiNi0.8Mn0.1Co0.1O2–δ. J. Electrochem. Soc. 2012, 159, A396–A401.

34

Kim, Y. Lithium nickel cobalt manganese oxide synthesized using alkali chloride flux: Morphology and performance as a cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 2329–2333.

35

Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.

36

Sun, C. L.; Liao, X. B.; Xia, F. J.; Zhao, Y.; Zhang, L.; Mu, S.; Shi, S. S.; Li, Y. X.; Peng, H. Y.; Van Tendeloo, G. et al. High-voltage cycling induced thermal vulnerability in LiCoO2 cathode: Cation loss and oxygen release driven by oxygen vacancy migration. ACS Nano 2020, 14, 6181–6190.

37

Kimijima, T.; Zettsu, N.; Yubuta, K.; Hirata, K.; Kami, K.; Teshima, K. Molybdate flux growth of idiomorphic Li(Ni1/3Co1/3Mn1/3)O2 single crystals and characterization of their capabilities as cathode materials for lithium-ion batteries. J. Mater. Chem. A 2016, 4, 7289–7296.

38

Kimijima, T.; Zettsu, N.; Teshima, K. Growth manner of octahedral-shaped Li(Ni1/3Co1/3Mn1/3)O2 single crystals in molten Na2SO4. Cryst. Growth Des. 2016, 16, 2618–2623.

39

Xiong, X. H.; Wang, Z. X.; Yue, P.; Guo, H. J.; Wu, F. X.; Wang, J. X.; Li, X. H. Washing effects on electrochemical performance and storage characteristics of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium-ion batteries. J. Power Sources 2013, 222, 318–325.

40

Wu, Y.; Cao, T.; Wang, R.; Meng, F. J.; Zhang, J. T.; Cao, C. B. A general strategy for the synthesis of two-dimensional holey nanosheets as cathodes for superior energy storage. J. Mater. Chem. A 2018, 6, 8374–8381.

41

Li, D. C.; Muta, T.; Zhang, L. Q.; Yoshio, M.; Noguchi, H. Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2. J. Power Sources 2004, 132, 150–155.

42

Kang, K.; Ceder, G. Factors that affect Li mobility in layered lithium transition metal oxides. Phys. Rev. B 2006, 74, 094105.

43

Kim, J.; Lee, H.; Cha, H.; Yoon, M.; Park, M.; Cho, J. Prospect and reality of Ni-rich cathode for commercialization. Adv. Energy Mater. 2018, 8, 1702028.

44

Duan, J. G.; Wu, C.; Cao, Y. B.; Huang, D. H.; Du, K.; Peng, Z. D.; Hu, G. R. Enhanced compacting density and cycling performance of Ni-riched electrode via building mono dispersed micron scaled morphology. J. Alloys Compd. 2017, 695, 91–99.

45

Wu, K.; Li, Q.; Dang, R. B.; Deng, X.; Chen, M. M.; Lee, Y. L.; Xiao, X. L.; Hu, Z. B. A novel synthesis strategy to improve cycle stability of LiNi0.8Mn0.1Co0.1O2 at high cut-off voltages through core-shell structuring. Nano Res. 2019, 12, 2460–2467.

46

Dong, M. X.; Wang, Z. X.; Li, H. K.; Guo, H. J.; Li, X. H.; Shih, K.; Wang, J. X. Metallurgy inspired formation of homogeneous Al2O3 coating layer to improve the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material. ACS Sustainable Chem. Eng. 2017, 5, 10199–10205.

47

Nai, J. W.; Zhao, X. Y.; Yuan, H. D.; Tao, X. Y.; Guo, L. Amorphous carbon-based materials as platform for advanced high-performance anodes in lithium secondary batteries. Nano Res. 2021, 14, 2053–2066.

Nano Research
Pages 2052-2059
Cite this article:
Guo F, Xie Y, Zhang Y. Low-temperature strategy to synthesize single-crystal LiNi0.8Co0.1Mn0.1O2 with enhanced cycling performances as cathode material for lithium-ion batteries. Nano Research, 2022, 15(3): 2052-2059. https://doi.org/10.1007/s12274-021-3784-2
Topics:

999

Views

40

Crossref

43

Web of Science

41

Scopus

2

CSCD

Altmetrics

Received: 03 June 2021
Revised: 17 July 2021
Accepted: 29 July 2021
Published: 19 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return