Journal Home > Volume 15 , Issue 3

With high reversible capacities of more than 200 mAh/g, Ni-rich layered oxides Li[NixCoyMn1–xy]O2 (x ≥ 0.6) serve as the most promising cathode materials for lithium-ion batteries (LIBs). However, the anisotropic lattice volume changes linked to their α-NaFeO2 structured crystal grains bring about poor cycle performances for conventionally produced NCM materials. To deal with these issue, single-crystal µm-sized LiNi0.8Co0.1Mn0.1O2 rods was synthesized by a hydrothermal method. Compared with conventional synthesis methods, these LiNi0.8Co0.1Mn0.1O2 rods were calcined at a low temperature with excessive lithium sources, which not only reduces the sintering temperature but also ensures the mono-dispersed micrometer-scaled particle distribution. When used as the cathode material for LIBs, the as-prepared LiNi0.8Co0.1Mn0.1O2, with ordered layered-structure and low degree of cation mixing, shows excellent electrochemical performances. When sintered at 750 °C with 50% Li-excess, the cathode material delivered an initial discharge capacity of 226.9 mAh/g with Coulombic efficiency of 91.2% at 0.1 C (1 C = 200 mA/g) in the voltage range of 2.8‒4.3 V. When charge-discharged at 1 C for 100 cycles, discharge capacity of 178.1 mAh/g with the capacity retention of 95.1% are still obtained. The cycling stability at high cut-off voltage is also outstanding. These superior electrochemical properties should be related to the monodispersed micron scaled morphology which not only decreases the contact area between electrode and electrolyte but also mitigates the formation of microcracks. This low-temperature strategy of synthesizing single-crystal LiNi0.8Co0.1Mn0.1O2 rods should be able to provide a feasible method for synthesizing other single-crystal Ni-rich cathode materials with excellent electrochemical performances for LIB.

Publication history
Copyright
Acknowledgements

Publication history

Received: 03 June 2021
Revised: 17 July 2021
Accepted: 29 July 2021
Published: 19 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank the National Science Foundation of China (grant No. 21271145) and the National Science Foundation of Hubei Province (grant No. 2015CFB537) for the financial support for this investigation.

Return