AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance

Huabo Liu1Jiaxing Liang1John Watt2Richard D. Tilley3Rose Amal1Da-Wei Wang1( )
School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NW 87545, USA
School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
Show Author Information

Graphical Abstract

Wafer-scale quasi-layered tungstate-doped polypyrrole prepared from electrochemical deposition shows high volumetric capacitance and excellent charge—discharge cycling stability.

Abstract

Layered materials are particularly attractive for supercapacitors because of their unique physical, electrical and chemical properties. Here, we demonstrate a facile and scalable electrochemical deposition method for wafer-scale synthesis of quasi-layered tungstate-doped polypyrrole films (named TALPy) with controllable thickness and size. The as-prepared TALPy film exhibits a high gravimetric density and excellent volumetric capacitance, exceeding many high-performing carbon- and polymer-based film electrodes. Based on combined results of ex-situ X-ray diffraction (XRD), Raman and X-ray photoelectron spectroscopy (XPS), it is determined that TALPy stores charge through an ion intercalation process accompanied by change in oxidation states of polypyrrole backbone, which is referred as intercalation pseudocapacitance. All these results suggest the great promise of electrochemical deposition as a scalable and controllable bottom-up approach for synthesizing quasi-layered conductive organic-inorganic hybrid films for electrochemical energy storage applications with high volumetric performance.

Electronic Supplementary Material

Download File(s)
12274_2021_3783_MOESM1_ESM.pdf (496.8 KB)

References

[1]

Simon, P.; Gogotsi, Y.; Dunn, B. Where do batteries end and supercapacitors begin? Science 2014, 343, 1210–1211.

[2]

Jiang, Y.; Fletcher, J.; Burr, P.; Hall, C.; Zheng, B. W.; Wang, D. W.; Ouyang, Z.; Lennon, A. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power. J. Power Sources 2018, 384, 396–407.

[3]

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

[4]

Bryan, A. M.; Santino, L. M.; Lu, Y.; Acharya, S.; D’Arcy, J. M. Conducting polymers for pseudocapacitive energy storage. Chem. Mater. 2016, 28, 5989–5998.

[5]

Wang, F. X.; Wu, X. W.; Yuan, X. H.; Liu, Z. C.; Zhang, Y.; Fu, L. J.; Zhu, Y. S.; Zhou, Q. M.; Wu, Y. P.; Huang, W. Latest advances in supercapacitors: From new electrode materials to novel device designs. Chem. Soc. Rev. 2017, 46, 6816–6854.

[6]

Wang, K. B.; Xun, Q.; Zhang, Q. C. Recent progress in metal–organic frameworks as active materials for supercapacitors. EnergyChem 2020, 2, 100025.

[7]

Wang, K. B.; Li, Q. Q.; Ren, Z. J.; Li, C.; Chu, Y.; Wang, Z. K.; Zhang, M. D.; Wu, H.; Zhang, Q. C. 2D Metal-organic frameworks (MOFs) for high-performance BatCap hybrid devices. Small 2020, 16, 2001987.

[8]

Wang, K. B.; Bi, R.; Huang, M. L.; Lv, B.; Wang, H. J.; Li, C.; Wu, H.; Zhang, Q. C. Porous cobalt metal–organic frameworks as active elements in battery–supercapacitor hybrid devices. Inorg. Chem. 2020, 59, 6808–6814.

[9]

Bonaccorso, F.; Colombo, L.; Yu, G. H.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

[10]

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

[11]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[12]

Augustyn, V.; Gogotsi, Y. 2D materials with nanoconfined fluids for electrochemical energy storage. Joule. 2017, 1, 443–452.

[13]

Yu, X.; Yun, S.; Yeon, J. S.; Bhattacharya, P.; Wang, L. B.; Lee, S. W.; Hu, X. L.; Park, H. S. Emergent pseudocapacitance of 2D nanomaterials. Adv. Energy Mater. 2018, 8, 1702930.

[14]

Da, Y. M.; Liu, J. X.; Zhou, L.; Zhu, X. H.; Chen, X. D.; Fu, L. Engineering 2D architectures toward high-performance micro-supercapacitors. Adv. Mater. 2019, 31, 1802793.

[15]

Pomerantseva, E.; Gogotsi, Y. Two–dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

[16]

Mendoza-Sánchez, B.; Gogotsi, Y. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater. 2016, 28, 6104–6135.

[17]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[18]

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

[19]

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 2008, 3, 101–105.

[20]

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

[21]

Acerce, M.; Voiry, D.; Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10, 313–318.

[22]

Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

[23]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[24]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide "clay" with high volumetric capacitance. Nature 2014, 516, 78–81.

[25]

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

[26]

Kang, J. L.; Huang, S. H.; Jiang, K. Y.; Lu, C. B.; Chen, Z. Y.; Zhu, J. H.; Yang, C. Q.; Ciesielski, A.; Qiu, F.; Zhuang, X. D. 2D porous polymers with sp2-carbon connections and sole sp2-carbon skeletons. Adv. Funct. Mater. 2020, 30, 2000857.

[27]

Jiang, K. Y.; Baburin, I. A.; Han, P.; Yang, C. Q.; Fu, X. B.; Yao, Y. F.; Li, J. T.; Cánovas, E.; Seifert, G.; Chen, J. S. et al. Interfacial approach toward benzene-bridged polypyrrole film-based micro-supercapacitors with ultrahigh volumetric power density. Adv. Funct. Mater. 2020, 30, 1908243.

[28]

Chen, Z. Y.; Chen, Y. H.; Zhao, Y. Z.; Qiu, F.; Jiang, K. Y.; Huang, S. H.; Ke, C. C.; Zhu, J. H.; Tranca, D.; Zhuang, X. D. B/N-enriched semi-conductive polymer film for micro-supercapacitors with AC line-filtering performance. Langmuir 2021, 37, 2523–2531.

[29]

Yu, T. L.; Wang, Y. F.; Jiang, K. Y.; Zhai, G. Q.; Ke, C. C.; Zhang, J. C.; Li, J. T.; Tranca, D.; Kymakis, E.; Zhuang, X. D. Catechol-coordinated framework film-based micro-supercapacitors with AC line filtering performance. Chem.—Eur. J. 2021, 27, 6340–6347.

[30]

Xiao, K. F.; Jiang, D. L.; Amal, R.; Wang, D. W. A 2D conductive organic–inorganic hybrid with extraordinary volumetric capacitance at minimal swelling. Adv. Mater. 2018, 30, 1800400.

[31]

Xiao, K. F.; Pan, J.; Liang, K.; Su, H. J.; Jiang, D. L.; Amal, R.; Wang, D. W. Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Stor. Mater. 2018, 14, 90–99.

[32]

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

[33]
Şimşek, B.; Ceran, Ö. B.; Şara, O. N. Difficulties in thin film synthesis. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O. V.; Torres-Martínez, L. M.; Kharisov, B. I., Eds.; Springer: Cham, 2020; pp 1–23.
[34]

Yu, M. H.; Feng, X. L. Thin-film electrode-based supercapacitors. Joule 2019, 3, 338–360.

[35]

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

[36]

Li, H.; Qi, C. S.; Tao, Y.; Liu, H. B.; Wang, D. W.; Li, F.; Yang, Q. H.; Cheng, H. M. Quantifying the volumetric performance metrics of supercapacitors. Adv. Energy Mater. 2019, 9, 1900079.

[37]

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

[38]

Wang, Z. H.; Tammela, P.; Strømme, M.; Nyholm, L. Nanocellulose coupled flexible polypyrrole@graphene oxide composite paper electrodes with high volumetric capacitance. Nanoscale 2015, 7, 3418–3423.

[39]

Wang, Z. H.; Carlsson, D. O.; Tammela, P.; Hua, K.; Zhang, P.; Nyholm, L.; Strømme, M. Surface modified nanocellulose fibers yield conducting polymer-based flexible supercapacitors with enhanced capacitances. ACS Nano 2015, 9, 7563–7571.

[40]

Wang, D. W.; Li, F.; Zhao, J. P.; Ren, W. C.; Chen, Z. G.; Tan, J.; Wu, Z. S.; Gentle, I.; Lu, G. Q.; Cheng, H. M. Fabrication of graphene/polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 2009, 3, 1745–1752.

[41]

Lin, D.; Tang, Z. H.; Pan, Q. J.; Zhang, S. P.; Huo, D. X.; Yan, S. S.; Han, F. M. Dense reduced graphene oxide films obtained by pressing create stable and compact capacitive energy storage. ChemElectroChem 2020, 7, 1987–1991.

[42]

Jiang, L. L.; Sheng, L. Z.; Long, C. L.; Fan, Z. J. Densely packed graphene nanomesh–carbon nanotube hybrid film for ultra-high volumetric performance supercapacitors. Nano Energy 2015, 11, 471–480.

[43]

Wamser, C. A. Hydrolysis of fluoboric acid in aqueous solution. J. Am. Chem. Soc. 1948, 70, 1209–1215.

[44]

Mesmer, R. E.; Palen, K. M.; Baes, Jr. C. F. Fluoroborate equilibriums in aqueous solutions. Inorg. Chem. 1973, 12, 89–95.

[45]

Mathis, T. S.; Kurra, N.; Wang, X. H.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy storage data reporting in perspective—Guidelines for interpreting the performance of electrochemical energy storage systems. Adv. Energy Mater. 2019, 9, 1902007.

[46]

Shao, J. J.; Raidongia, K.; Koltonow, A. R.; Huang, J. X. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat. Commun. 2015, 6, 7602.

[47]

Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

[48]

Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall’Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 2013, 341, 1502–1505.

[49]

Wang, J.; Xu, Y. L.; Yan, F.; Zhu, J. B.; Wang, J. P. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life. J. Power Sources 2011, 196, 2373–2379.

[50]

Varade, V.; Honnavar, G. V.; Anjaneyulu, P.; Ramesh, K. P.; Menon, R. Probing disorder and transport properties in polypyrrole thin-film devices by impedance and Raman spectroscopy. J. Phys. D: Appl. Phys. 2013, 46, 365306.

[51]

Duchet, J.; Legras, R.; Demoustier-Champagne, S. Chemical synthesis of polypyrrole: Structure-properties relationship. Synth. Met. 1998, 98, 113–122.

[52]

Šetka, M.; Calavia, R.; Vojkůvka, L.; Llobet, E.; Drbohlavová, J.; Vallejos, S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 2019, 9, 8465.

[53]

Ge, H. L.; Qi, G. J.; Kang, E. T.; Neoh, K. G. Study of overoxidized polypyrrole using X-ray photoelectron spectroscopy. Polymer 1994, 35, 504–508.

[54]

Malitesta, C.; Losito, I.; Sabbatini, L.; Zambonin, P. G. New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J. Electron Spectrosc. Relat. Phenom 1995, 76, 629–634.

Nano Research
Pages 4895-4900
Cite this article:
Liu H, Liang J, Watt J, et al. Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance. Nano Research, 2023, 16(4): 4895-4900. https://doi.org/10.1007/s12274-021-3783-3
Part of a topical collection:

1115

Views

3

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 03 May 2021
Revised: 28 July 2021
Accepted: 31 July 2021
Published: 12 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return