Journal Home > Volume 15 , Issue 3

The immunosuppressive tumor microenvironment (TME) is crucial in the occurrence of tumorigenesis, metastasis, and drug resistance. Among all stromal cells, tumor-associated macrophages (TAMs) are recognized as vital components causing the TME to be favorable for cancer cells and are also main targets in cancer immunotherapy. To date, nanoparticle (NP)-based drug delivery systems, as new technology platforms, have exhibited considerable advantages, such as targeted drug delivery at tumor sites, enhanced drug transport efficiency, and controllable drug release profiles, which provide new approaches for cancer therapy. Regarding TAM-targeting nanoparticles, various therapeutic strategies have been developed by varying their design, namely, by blocking TAM recruitment, promoting TAM transformation, and directly diminishing existing TAMs. In the current review, we provide a brief overview of the role of TAMs in the tumor microenvironment and their functions and highlight strategies for TAM targeting. Moreover, the applications of nanoparticles in targeting TAMs to improve cancer therapeutic efficiency are summarized.


menu
Abstract
Full text
Outline
About this article

Nanoparticles targeting tumor-associated macrophages: A novel anti-tumor therapy

Show Author's information Siyuan Chen§Furong Qin§Manni Wang§Yuquan WeiZhiyong QianXiawei Wei( )
Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China

§ Siyuan Chen, Furong Qin, and Manni Wang contributed equally to this work.

Abstract

The immunosuppressive tumor microenvironment (TME) is crucial in the occurrence of tumorigenesis, metastasis, and drug resistance. Among all stromal cells, tumor-associated macrophages (TAMs) are recognized as vital components causing the TME to be favorable for cancer cells and are also main targets in cancer immunotherapy. To date, nanoparticle (NP)-based drug delivery systems, as new technology platforms, have exhibited considerable advantages, such as targeted drug delivery at tumor sites, enhanced drug transport efficiency, and controllable drug release profiles, which provide new approaches for cancer therapy. Regarding TAM-targeting nanoparticles, various therapeutic strategies have been developed by varying their design, namely, by blocking TAM recruitment, promoting TAM transformation, and directly diminishing existing TAMs. In the current review, we provide a brief overview of the role of TAMs in the tumor microenvironment and their functions and highlight strategies for TAM targeting. Moreover, the applications of nanoparticles in targeting TAMs to improve cancer therapeutic efficiency are summarized.

Keywords: tumor-associated macrophages, immunotherapy, nanoparticles, tumors

References(231)

1

Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30.

2

de Visser, K. E.; Eichten, A.; Coussens, L. M. Paradoxical roles of the immune system during cancer development. Nat. Rev. Cancer 2006, 6, 24–37.

3

Arandjelovic, S.; Ravichandran, K. S. Phagocytosis of apoptotic cells in homeostasis. Nat. Immunol. 2015, 16, 907–917.

4

Hui, L. L.; Chen, Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015, 368, 7–13.

5

Raggi, C.; Mousa, H. S.; Correnti, M.; Sica, A.; Invernizzi, P. Cancer stem cells and tumor-associated macrophages: A roadmap for multitargeting strategies. Oncogene 2016, 35, 671–682.

6

De Palma, M.; Biziato, D.; Petrova, T. V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017, 17, 457–474.

7
Abbas, Z.; Rehman, S. An overview of cancer treatment modalities. In Neoplasm. Shahzad, H. N., Ed.; 2018.https://doi.org/10.5772/intechopen.76558
DOI
8

Yang, B.; Gao, J.; Pei, Q.; Xu, H. X.; Yu, H. J. Engineering prodrug nanomedicine for cancer immunotherapy. Adv. Sci. 2020, 7, 2002365.

9

Margol, A. S.; Robison, N. J.; Gnanachandran, J.; Hung, L. T.; Kennedy, R. J.; Vali, M.; Dhall, G.; Finlay, J. L.; Erdreich-Epstein, A.; Krieger, M. D. et al. Tumor-associated macrophages in SHH subgroup of medulloblastomas. Clin. Cancer Res. 2015, 21, 1457–1465.

10

Cha, H. R.; Lee, J. H.; Ponnazhagan, S. Revisiting immunotherapy: A focus on prostate cancer. Cancer Res. 2020, 80, 1615–1623.

11

Wei, X. W.; Shao, B.; He, Z. Y.; Ye, T. H.; Luo, M.; Sang, Y. X.; Liang, X.; Wang, W.; Luo, S. T.; Yang, S. Y. et al. Cationic nanocarriers induce cell necrosis through impairment of Na+/K+-ATPase and cause subsequent inflammatory response. Cell Res. 2015, 25, 237–253.

12

Muntimadugu, E.; Kommineni, N.; Khan, W. Exploring the potential of nanotherapeutics in targeting tumor microenvironment for cancer therapy. Pharmacol. Res. 2017, 126, 109–122.

13

Scheinberg, D. A.; Villa, C. H.; Escorcia, F. E.; McDevitt, M. R. Conscripts of the infinite armada: Systemic cancer therapy using nanomaterials. Nat. Rev. Clin. Oncol. 2010, 7, 266–276.

14

Riley, R. S.; June, C. H.; Langer, R.; Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 2019, 18, 175–196.

15

Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 2003, 55, 329–347.

16

Ng, K. K.; Lovell, J. F.; Zheng, G. Lipoprotein-inspired nanoparticles for cancer theranostics. Acc. Chem. Res. 2011, 44, 1105–1113.

17

Elsabahy, M.; Wooley, K. L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012, 41, 2545–2561.

18

Ruffell, B.; Affara, N. I.; Coussens, L. M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012, 33, 119–126.

19

Sica, A.; Schioppa, T.; Mantovani, A.; Allavena, P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 2006, 42, 717–727.

20

Sica, A.; Larghi, P.; Mancino, A.; Rubino, L.; Porta, C.; Totaro, M. G.; Rimoldi, M.; Biswas, S. K.; Allavena, P.; Mantovani, A. Macrophage polarization in tumour progression. Semin. Cancer Biol. 2008, 18, 349–355.

21

Biswas, S. K.; Sica, A.; Lewis, C. E. Plasticity of macrophage function during tumor progression: Regulation by distinct molecular mechanisms. J. Immunol. 2008, 180, 2011–2017.

22

Leuschner, F.; Nahrendorf, M. Novel functions of macrophages in the heart: Insights into electrical conduction, stress, and diastolic dysfunction. Eur. Heart J. 2020, 41, 989–994.

23

Hoeffel, G.; Ginhoux, F. Fetal monocytes and the origins of tissue-resident macrophages. Cell. Immunol. 2018, 330, 5–15.

24

Zhao, Y.; Zou, W. L.; Du, J. F.; Zhao, Y. The origins and homeostasis of monocytes and tissue-resident macrophages in physiological situation. J. Cell. Physiol. 2018, 233, 6425–6439.

25

Sica, A.; Mantovani, A. Macrophage plasticity and polarization: In vivo veritas. J. Clin. Invest. 2012, 122, 787–795.

26

Chen, S. Y.; Yang, J.; Wei, Y. Q.; Wei, X. W. Epigenetic regulation of macrophages: From homeostasis maintenance to host defense. Cell. Mol. Immunol. 2020, 17, 36–49.

27

Sica, A.; Erreni, M.; Allavena, P.; Porta, C. Macrophage polarization in pathology. Cell. Mol. Life Sci. 2015, 72, 4111–4126.

28

Yunna, C.; Mengru, H.; Wang, L.; Chen, W. D. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090.

29

Barnes, T. A.; Amir, E. HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br. J. Cancer 2017, 117, 451–460.

30

Santoni, M.; Romagnoli, E.; Saladino, T.; Foghini, L.; Guarino, S.; Capponi, M.; Giannini, M.; Cognigni, P. D.; Ferrara, G.; Battelli, N. Triple negative breast cancer: Key role of Tumor-Associated Macrophages in regulating the activity of anti-PD-1/PD-L1 agents. Biochim. Biophys. Acta- Rev. Cancer 2018, 1869, 78–84.

31

Avasarala, S.; Wu, P. Y.; Khan, S. Q.; Yanlin, S.; Van Scoyk, M.; Bao, J.; Di Lorenzo, A.; David, O.; Bedford, M. T.; Gupta, V. et al. PRMT6 promotes lung tumor progression via the alternate activation of tumor-associated macrophages. Mol. Cancer Res. 2020, 18, 166–178.

32

Franklin, R. A.; Liao, W.; Sarkar, A.; Kim, M. V.; Bivona, M. R.; Liu, K.; Pamer, E. G.; Li, M. O. The cellular and molecular origin of tumor-associated macrophages. Science 2014, 344, 921–925.

33

De Palma, M.; Lewis, C. E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013, 23, 277–286.

34

Murdoch, C.; Muthana, M.; Coffelt, S. B.; Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 2008, 8, 618–631.

35

Relation, T.; Dominici, M.; Horwitz, E. M. Concise review: An (Im)Penetrable shield: How the tumor microenvironment protects cancer stem cells. Stem Cells. 2017, 35, 1123–1130.

36

Qian, B. Z.; Pollard, J. W. Macrophage diversity enhances tumor progression and metastasis. Cell 2010, 141, 39–51.

37

Porta, C.; Larghi, P.; Rimoldi, M.; Totaro, M. G.; Allavena, P.; Mantovani, A.; Sica, A. Cellular and molecular pathways linking inflammation and cancer. Immunobiology 2009, 214, 761–777.

38

Franklin, R. A.; Li, M. O. Ontogeny of tumor-associated macrophages and its implication in cancer regulation. Trends Cancer 2016, 2, 20–34.

39

Allavena, P.; Germano, G.; Marchesi, F.; Mantovani, A. Chemokines in cancer related inflammation. Exp. Cell Res. 2011, 317, 664–673.

40

Murdoch, C.; Giannoudis, A.; Lewis, C. E. Mechanisms regulating the recruitment of macrophages into hypoxic areas of tumors and other ischemic tissues. Blood 2004, 104, 2224–2234.

41

Bhaskaran, N.; Ghosh, S. K.; Yu, X. L.; Qin, S. H.; Weinberg, A.; Pandiyan, P.; Ye, F. C. Kaposi's sarcoma-associated herpesvirus infection promotes differentiation and polarization of monocytes into tumor-associated macrophages. Cell Cycle 2017, 16, 1611–1621.

42

Henze, A. T.; Mazzone, M. The impact of hypoxia on tumor-associated macrophages. J. Clin. Invest. 2016, 126, 3672–3679.

43

Wu, H.; Xu, J. B.; He, Y. L.; Peng, J. J.; Zhang, X. H.; Chen, C. Q.; Li, W.; Cai, S. R. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer. J. Surg. Oncol. 2012, 106, 462–468.

44

Lin, E. Y.; Li, J. F.; Gnatovskiy, L.; Deng, Y.; Zhu, L. Y.; Grzesik, D. A.; Qian, H.; Xue, X. N.; Pollard, J. W. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006, 66, 11238–11246.

45

Shieh, Y. S.; Hung, Y. J.; Hsieh, C. B.; Chen, J. S.; Chou, K. C.; Liu, S. Y. Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann. Surg. Oncol. 2009, 16, 751–760.

46

Giraudo, E.; Inoue, M.; Hanahan, D. An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis. J. Clin. Invest. 2004, 114, 623–633.

47

Leek, R. D.; Lewis, C. E.; Whitehouse, R.; Greenall, M.; Clarke, J.; Harris, A. L. Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res. 1996, 56, 4625–4629.

48

Kumar, V.; Gabrilovich, D. I. Hypoxia-inducible factors in regulation of immune responses in tumour microenvironment. Immunology 2014, 143, 512–519.

49

Allavena, P.; Sica, A.; Solinas, G.; Porta, C.; Mantovani, A. The inflammatory micro-environment in tumor progression: The role of tumor-associated macrophages. Crit. Rev. Oncol. Hematol. 2008, 66, 1–9.

50

Murdoch, C.; Lewis, C. E. Macrophage migration and gene expression in response to tumor hypoxia. Int. J. Cancer. 2005, 117, 701–708.

51

Strieter, R. M.; Burdick, M. D.; Gomperts, B. N.; Belperio, J. A.; Keane, M. P. CXC chemokines in angiogenesis. Cytokine Growth Factor Rev. 2005, 16, 593–609.

52

Heidemann, J.; Ogawa, H.; Dwinell, M. B.; Rafiee, P.; Maaser, C.; Gockel, H. R.; Otterson, M. F.; Ota, D. M.; Lügering, N.; Domschke, W. et al. Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J. Biol. Chem. 2003, 278, 8508–8515.

53

Romagnani, P.; Lasagni, L.; Annunziato, F.; Serio, M.; Romagnani, S. CXC chemokines: The regulatory link between inflammation and angiogenesis. Trends Immunol. 2004, 25, 201–209.

54

Leek, R. D.; Hunt, N. C.; Landers, R. J.; Lewis, C. E.; Royds, J. A.; Harris, A. L. Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer. J. Pathol. 2000, 190, 430–436.

DOI
55

Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002, 23, 549–555.

56

Daurkin, I.; Eruslanov, E.; Stoffs, T.; Perrin, G. Q.; Algood, C.; Gilbert, S. M.; Rosser, C. J.; Su, L. M.; Vieweg, J.; Kusmartsev, S. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res. 2011, 71, 6400–6409.

57

Mangani, D.; Weller, M.; Roth, P. The network of immunosuppressive pathways in glioblastoma. Biochem. Pharmacol. 2017, 130, 1–9.

58

Zhang, J. Y.; Shi, Z. P.; Xu, X.; Yu, Z. R.; Mi, J. The influence of microenvironment on tumor immunotherapy. FEBS J. 2019, 286, 4160–4175.

59

Kryczek, I.; Zou, L. H.; Rodriguez, P.; Zhu, G. F.; Wei, S.; Mottram, P.; Brumlik, M.; Cheng, P.; Curiel, T.; Myers, L. et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J. Exp. Med. 2006, 203, 871–881.

60

Hartley, G. P.; Chow, L.; Ammons, D. T.; Wheat, W. H.; Dow, S. W. Programmed cell death ligand 1 (PD-L1) signaling regulates macrophage proliferation and activation. Cancer Immunol. Res. 2018, 6, 1260–1273.

61

Barkal, A. A.; Weiskopf, K.; Kao, K. S.; Gordon, S. R.; Rosental, B.; Yiu, Y. Y.; George, B. M.; Markovic, M.; Ring, N. G.; Tsai, J. M. et al. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol. 2018, 19, 76–84.

62

Rébé, C.; Végran, F.; Berger, H.; Ghiringhelli, F. STAT3 activation: A key factor in tumor immunoescape. JAKSTAT 2013, 2, e23010.

63

Mitchem, J. B.; Brennan, D. J.; Knolhoff, B. L.; Belt, B. A.; Zhu, Y.; Sanford, D. E.; Belaygorod, L.; Carpenter, D.; Collins, L.; Piwnica-Worms, D. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013, 73, 1128–1141.

64

Mamrot, J.; Balachandran, S.; Steele, E. J.; Lindley, R. A. Molecular model linking Th2 polarized M2 tumour‐associated macrophages with deaminase‐mediated cancer progression mutation signatures. Scand. J. Immunol. 2019, 89, e12760.

65

Schutyser, E.; Struyf, S.; Proost, P.; Opdenakker, G.; Laureys, G.; Verhasselt, B.; Peperstraete, L.; Van de Putte, I.; Saccani, A.; Allavena, P. et al. Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma. J. Biol. Chem. 2002, 277, 24584–24593.

66

Wang, D.; Yang, L.; Yue, D. L.; Cao, L.; Li, L. F.; Wang, D.; Ping, Y.; Shen, Z. B.; Zheng, Y. J.; Wang, L. P. et al. Macrophage-derived CCL22 promotes an immunosuppressive tumor microenvironment via IL-8 in malignant pleural effusion. Cancer Lett. 2019, 452, 244–253.

67

Bonecchi, R.; Bianchi, G.; Bordignon, P. P.; D'Ambrosio, D.; Lang, R.; Borsatti, A.; Sozzani, S.; Allavena, P.; Gray, P. A.; Mantovani, A. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 1998, 187, 129–134.

68

Lecoultre, M.; Dutoit, V.; Walker, P. R. Phagocytic function of tumor-associated macrophages as a key determinant of tumor progression control: A review. J. Immunother. Cancer 2020, 8, e001408.

69

Fidler, I. J.; Kripke, M. L. The challenge of targeting metastasis. Cancer Metastasis Rev. 2015, 34, 635–641.

70

Wang, J.; Cao, Z. Q.; Zhang, X. M.; Nakamura, M.; Sun, M. L.; Hartman, J.; Harris, R. A.; Sun, Y. P.; Cao, Y. H. Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res. 2015, 75, 306–315.

71

Goswami, K. K.; Ghosh, T.; Ghosh, S.; Sarkar, M.; Bose, A.; Baral, R. Tumor promoting role of anti-tumor macrophages in tumor microenvironment. Cell. Immunol. 2017, 316, 1–10.

72

Gocheva, V.; Wang, H. W.; Gadea, B. B.; Shree, T.; Hunter, K. E.; Garfall, A. L.; Berman, T.; Joyce, J. A. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 2010, 24, 241–255.

73

Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell 2010, 141, 52–67.

74

Vasiljeva, O.; Papazoglou, A.; Krüger, A.; Brodoefel, H.; Korovin, M.; Deussing, J.; Augustin, N.; Nielsen, B. S.; Almholt, K.; Bogyo, M. et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006, 66, 5242–5250.

75

Hagemann, T.; Wilson, J.; Kulbe, H.; Li, N. F.; Leinster, D. A.; Charles, K.; Klemm, F.; Pukrop, T.; Binder, C.; Balkwill, F. R. Macrophages induce invasiveness of epithelial cancer cells via NF-κB and JNK. J. Immunol. 2005, 175, 1197–1205.

76

Wyckoff, J.; Wang, W. G.; Lin, E. Y.; Wang, Y. R.; Pixley, F.; Stanley, E. R.; Graf, T.; Pollard, J. W.; Segall, J.; Condeelis, J. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004, 64, 7022–7029.

77

Yang, J.; Liao, D.; Chen, C.; Liu, Y.; Chuang, T. H.; Xiang, R.; Markowitz, D.; Reisfeld, R. A.; Luo, Y. P. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells 2013, 31, 248–258.

78

Yang, M.; Chen, J. Q.; Su, F.; Yu, B.; Su, F. X.; Lin, L.; Liu, Y. J.; Huang, J. D.; Song, E. W. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol. Cancer 2011, 10, 117.

79

Chow, E. K. H.; Ho, D. Cancer nanomedicine: From drug delivery to imaging. Sci. Transl. Med. 2013, 5, 216rv4.

80

Chen, Y.; Liu, Y.; Yao, Y. C.; Zhang, S. Y.; Gu, Z. W. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery. Org. Biomol. Chem. 2017, 15, 3232–3238.

81

Tan, W. B.; Zhang, Y. Surface modification of gold and quantum dot nanoparticles with chitosan for bioapplications. J. Biomed. Mater. Res. A 2005, 75A, 56–62.

82

Li, B. W.; Wang, F.; Gui, L. J.; He, Q.; Yao, Y. X.; Chen, H. Y. The potential of biomimetic nanoparticles for tumor-targeted drug delivery. Nanomedicine 2018, 13, 2099–2118.

83

Cainelli, F.; Vallone, A. Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi's sarcoma. Biol.: Targets Ther. 2009, 3, 385–390.

84

Chiang, N. J.; Chao, T. Y.; Hsieh, R. K.; Wang, C. H.; Wang, Y. W.; Yeh, C. G.; Chen, L. T. A phase I dose-escalation study of PEP02 (irinotecan liposome injection) in combination with 5-fluorouracil and leucovorin in advanced solid tumors. BMC Cancer 2016, 16, 907.

85

Miele, E.; Spinelli, G. P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine 2009, 4, 99–105.

86

Kim, T. Y.; Kim, D. W.; Chung, J. Y.; Shin, S. G.; Kim, S. C.; Heo, D. S.; Kim, N. K.; Bang, Y. J. Phase I and pharmacokinetic study of Genexol-PM, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clin. Cancer Res. 2004, 10, 3708–3716.

87

Murry, D. J.; Blaney, S. M. Clinical pharmacology of encapsulated sustained-release cytarabine. Ann. Pharmacother. 2000, 34, 1173–1178.

88

Würthwein, G.; Lanvers-Kaminsky, C.; Hempel, G.; Gastine, S.; Möricke, A.; Schrappe, M.; Karlsson, M. O.; Boos, J. Population pharmacokinetics to model the time-varying clearance of the PEGylated asparaginase oncaspar® in children with acute lymphoblastic leukemia. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 955–963.

89

Kwon, D.; Cha, B. G.; Cho, Y.; Min, J.; Park, E. B.; Kang, S. J.; Kim, J. Extra-large pore mesoporous silica nanoparticles for directing in vivo M2 macrophage polarization by delivering IL-4. Nano Lett. 2017, 17, 2747–2756.

90

Dreher, M. R.; Liu, W. G.; Michelich, C. R.; Dewhirst, M. W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst. 2006, 98, 335–344.

91

Leu, A. J.; Berk, D. A.; Lymboussaki, A.; Alitalo, K.; Jain, R. K. Absence of functional lymphatics within a murine sarcoma: A molecular and functional evaluation. Cancer Res. 2000, 60, 4324–4327.

92
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. In Cancer Nanotechnology: Methods and Protocols. Grobmyer, S. R.; Moudgil, B. M., Eds.; Springer: Humana Press, 2010; pp 25–37.https://doi.org/10.1007/978-1-60761-609-2_3
DOI
93

Duncan, R. Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century. J. Drug Target. 2017, 25, 759–780.

94

Lammers, T.; Peschke, P.; Kühnlein, R.; Subr, V.; Ulbrich, K.; Debus, J.; Huber, P.; Hennink, W.; Storm, G. Effect of radiotherapy and hyperthermia on the tumor accumulation of HPMA copolymer-based drug delivery systems. J. Control. Release 2007, 117, 333–341.

95

Choi, J.; Kim, H. Y.; Ju, E. J.; Jung, J.; Park, J.; Chung, H. K.; Lee, J. S.; Lee, J. S.; Park, H. J.; Song, S. Y. et al. Use of macrophages to deliver therapeutic and imaging contrast agents to tumors. Biomaterials 2012, 33, 4195–4203.

96

Sunshine, J. C.; Perica, K.; Schneck, J. P.; Green, J. J. Particle shape dependence of CD8+ T cell activation by artificial antigen presenting cells. Biomaterials 2014, 35, 269–277.

97

Perica, K.; Tu, A.; Richter, A.; Bieler, J. G.; Edidin, M.; Schneck, J. P. Magnetic field-induced T cell receptor clustering by nanoparticles enhances T cell activation and stimulates antitumor activity. ACS Nano 2014, 8, 2252–2260.

98

Huang, B.; Abraham, W. D.; Zheng, Y. R.; Bustamante López, S. C.; Luo, S. S.; Irvine, D. J. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 2015, 7, 291ra94.

99

Syn, N. L.; Wang, L. Z.; Chow, E. K. H.; Lim, C. T.; Goh, B. C. Exosomes in cancer nanomedicine and immunotherapy: Prospects and challenges. Trends Biotechnol. 2017, 35, 665–676.

100

Stephan, M. T.; Moon, J. J.; Um, S. H.; Bershteyn, A.; Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 2010, 16, 1035–1041.

101

Siegler, E. L.; Kim, Y. J.; Chen, X. H.; Siriwon, N.; Mac, J.; Rohrs, J. A.; Bryson, P. D.; Wang, P. Combination cancer therapy using chimeric antigen receptor-engineered natural killer cells as drug carriers. Mol. Ther. 2017, 25, 2607–2619.

102

Meir, R.; Shamalov, K.; Betzer, O.; Motiei, M.; Horovitz-Fried, M.; Yehuda, R.; Popovtzer, A.; Popovtzer, R.; Cohen, C. J. Nanomedicine for cancer immunotherapy: Tracking cancer-specific T-cells in vivo with gold nanoparticles and CT imaging. ACS Nano 2015, 9, 6363–6372.

103

Movahedi, K.; Schoonooghe, S.; Laoui, D.; Houbracken, I.; Waelput, W.; Breckpot, K.; Bouwens, L.; Lahoutte, T.; De Baetselier, P.; Raes, G. et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012, 72, 4165–4177.

104

Zhu, S. J.; Niu, M. M.; O'Mary, H.; Cui, Z. R. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol. Pharm. 2013, 10, 3525–3530.

105

Zhao, P. F.; Zhang, J. X.; Wu, A. H.; Zhang, M.; Zhao, Y. G.; Tang, Y. S.; Wang, B.; Chen, T. X.; Li, F.; Zhao, Q. et al. Biomimetic codelivery overcomes osimertinib-resistant NSCLC and brain metastasis via macrophage-mediated innate immunity. J. Control. Release 2021, 329, 1249–1261.

106

Overchuk, M.; Zheng, G. Overcoming obstacles in the tumor microenvironment: Recent advancements in nanoparticle delivery for cancer theranostics. Biomaterials 2018, 156, 217–237.

107

Cuccarese, M. F.; Dubach, J. M.; Pfirschke, C.; Engblom, C.; Garris, C.; Miller, M. A.; Pittet, M. J.; Weissleder, R. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 2017, 8, 14293.

108

Ng, T. S. C.; Gunda, V.; Li, R.; Prytyskach, M.; Iwamoto, Y.; Kohler, R. H.; Parangi, S.; Weissleder, R.; Miller, M. A. Detecting immune response to therapies targeting PDL1 and BRAF by using ferumoxytol MRI and macrin in anaplastic thyroid cancer. Radiology 2021, 298, 123–132.

109

Kim, H. Y.; Li, R.; Ng, T. S. C.; Courties, G.; Rodell, C. B.; Prytyskach, M.; Kohler, R. H.; Pittet, M. J.; Nahrendorf, M.; Weissleder, R. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64Cu-labeled macrin. ACS Nano 2018, 12, 12015–12029.

110

Miller, M. A.; Zheng, Y. R.; Gadde, S.; Pfirschke, C.; Zope, H.; Engblom, C.; Kohler, R. H.; Iwamoto, Y.; Yang, K. S.; Askevold, B. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 2015, 6, 8692.

111

Alizadeh, D.; Zhang, L. Y.; Hwang, J.; Schluep, T.; Badie, B. Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine: Nanotechnol., Biol. Med. 2010, 6, 382–390.

112

Li, T. F.; Li, K.; Wang, C.; Liu, X.; Wen, Y.; Xu, Y. H.; Zhang, Q.; Zhao, Q. Y.; Shao, M.; Li, Y. Z. et al. Harnessing the cross-talk between tumor cells and tumor-associated macrophages with a nano-drug for modulation of glioblastoma immune microenvironment. J. Control. Release 2017, 268, 128–146.

113

Bornhöfft, K. F.; Goldammer, T.; Rebl, A.; Galuska, S. P. Siglecs: A journey through the evolution of sialic acid-binding immunoglobulin-type lectins. Dev. Comp. Immunol. 2018, 86, 219–231.

114

Ding, J. Q.; Zhao, D.; Hu, Y. W.; Liu, M. Q.; Liao, X. R.; Zhao, B. W.; Liu, X. R.; Deng, Y. H.; Song, Y. Z. Terminating the renewal of tumor-associated macrophages: A sialic acid-based targeted delivery strategy for cancer immunotherapy. Int. J. Pharm. 2019, 571, 118706.

115

Peña, C. G.; Nakada, Y.; Saatcioglu, H. D.; Aloisio, G. M.; Cuevas, I.; Zhang, S.; Miller, D. S.; Lea, J. S.; Wong, K. K.; DeBerardinis, R. J. et al. LKB1 loss promotes endometrial cancer progression via CCL2-dependent macrophage recruitment. J. Clin. Invest. 2015, 125, 4063–4076.

116

Qian, B. Z.; Li, J. F.; Zhang, H.; Kitamura, T.; Zhang, J. H.; Campion, L. R.; Kaiser, E. A.; Snyder, L. A.; Pollard, J. W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011, 475, 222–225.

117

Leuschner, F.; Dutta, P.; Gorbatov, R.; Novobrantseva, T. I.; Donahoe, J. S.; Courties, G.; Lee, K. M.; Kim, J. I.; Markmann, J. F.; Marinelli, B. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 2011, 29, 1005–1010.

118

Loberg, R. D.; Ying, C.; Craig, M.; Day, L. L.; Sargent, E.; Neeley, C.; Wojno, K.; Snyder, L. A.; Yan, L.; Pienta, K. J. Targeting CCL2 with systemic delivery of neutralizing antibodies induces prostate cancer tumor regression in vivo. Cancer Res 2007, 67, 9417–9424.

119

Cassetta, L.; Pollard, J. W. Targeting macrophages: Therapeutic approaches in cancer. Nat. Rev. Drug Discov 2018, 17, 887–904.

120

Pyonteck, S. M.; Akkari, L.; Schuhmacher, A. J.; Bowman, R. L.; Sevenich, L.; Quail, D. F.; Olson, O. C.; Quick, M. L.; Huse, J. T.; Teijeiro, V. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013, 19, 1264–1272.

121

Bonapace, L.; Coissieux, M. M.; Wyckoff, J.; Mertz, K. D.; Varga, Z.; Junt, T.; Bentires-Alj, M. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 2014, 515, 130–133.

122

Zhao, Y. D.; Muhetaerjiang, M.; An, H. W.; Fang, X. H.; Zhao, Y. L.; Wang, H. Nanomedicine enables spatiotemporally regulating macrophage-based cancer immunotherapy. Biomaterials 2021, 268, 120552.

123

Tian, L. L.; Yi, X.; Dong, Z. L.; Xu, J.; Liang, C.; Chao, Y.; Wang, Y. X.; Yang, K.; Liu, Z. Calcium bisphosphonate nanoparticles with chelator-free radiolabeling to deplete tumor-associated macrophages for enhanced cancer radioisotope therapy. ACS Nano 2018, 12, 11541–11551.

124

Lu, X. F.; Meng, T. T. Depletion of tumor-associated macrophages enhances the anti-tumor effect of docetaxel in a murine epithelial ovarian cancer. Immunobiology 2019, 224, 355–361.

125

Ries, C. H.; Cannarile, M. A.; Hoves, S.; Benz, J.; Wartha, K.; Runza, V.; Rey-Giraud, F.; Pradel, L. P.; Feuerhake, F.; Klaman, I. et al. Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014, 25, 846–859.

126

Ngambenjawong, C.; Cieslewicz, M.; Schellinger, J. G.; Pun, S. H. Synthesis and evaluation of multivalent M2pep peptides for targeting alternatively activated M2 macrophages. J. Control. Release 2016, 224, 103–111.

127

Cieslewicz, M.; Tang, J.; Yu, J. L.; Cao, H.; Zavaljevski, M.; Motoyama, K.; Lieber, A.; Raines, E. W.; Pun, S. H. Targeted delivery of proapoptotic peptides to tumor-associated macrophages improves survival. Proc. Natl. Acad. Sci. USA 2013, 110, 15919–15924.

128

Neyen, C.; Mukhopadhyay, S.; Gordon, S.; Hagemann, T. An apolipoprotein A-I mimetic targets scavenger receptor A on tumor-associated macrophages: A prospective anticancer treatment. Oncoimmunology 2013, 2, e24461.

129

Qian, Y.; Qiao, S.; Dai, Y. F.; Xu, G. Q.; Dai, B. L.; Lu, L. S.; Yu, X.; Luo, Q. M.; Zhang, Z. H. Molecular-targeted immunotherapeutic strategy for melanoma via dual-targeting nanoparticles delivering small interfering RNA to tumor-associated macrophages. ACS Nano 2017, 11, 9536–9549.

130

Shen, S.; Li, H. J.; Chen, K. G.; Wang, Y. C.; Yang, X. Z.; Lian, Z. X.; Du, J. Z.; Wang, J. Spatial targeting of tumor-associated macrophages and tumor cells with a pH-sensitive cluster nanocarrier for cancer chemoimmunotherapy. Nano Lett. 2017, 17, 3822–3829.

131

Qiu, Q. J.; Li, C.; Song, Y. Z.; Shi, T.; Luo, X.; Zhang, H. X.; Hu, L.; Yan, X. Y.; Zheng, H. L.; Liu, M. Y. et al. Targeted delivery of ibrutinib to tumor-associated macrophages by sialic acid-stearic acid conjugate modified nanocomplexes for cancer immunotherapy. Acta Biomater. 2019, 92, 184–195.

132

Penn, C. A.; Yang, K.; Zong, H.; Lim, J. Y.; Cole, A.; Yang, D. L.; Baker, J.; Goonewardena, S. N.; Buckanovich, R. J. Therapeutic impact of nanoparticle therapy targeting tumor-associated macrophages. Mol. Cancer Ther. 2018, 17, 96–106.

133

Hoffmann, P. R.; deCathelineau, A. M.; Ogden, C. A.; Leverrier, Y.; Bratton, D. L.; Daleke, D. L.; Ridley, A. J.; Fadok, V. A.; Henson, P. M. Phosphatidylserine (PS) induces PS receptor-mediated macropinocytosis and promotes clearance of apoptotic cells. J. Cell. Biol. 2001, 155, 649–660.

134

Liu, Y.; Wang, J.; Zhang, J.; Marbach, S.; Xu, W.; Zhu, L. Targeting tumor-associated macrophages by MMP2-sensitive apoptotic body-mimicking nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 52402–52414.

135

Wang, J. X.; Shen, S.; Li, J.; Cao, Z. Y.; Yang, X. Z. Precise depletion of tumor seed and growing soil with shrinkable nanocarrier for potentiated cancer chemoimmunotherapy. ACS Nano 2021, 15, 4636–4646.

136

Da Silva, C. G.; Camps, M. G. M.; Li, T. M. W. Y.; Chan, A. B.; Ossendorp, F.; Cruz, L. J. Co-delivery of immunomodulators in biodegradable nanoparticles improves therapeutic efficacy of cancer vaccines. Biomaterials 2019, 220, 119417.

137

Rodell, C. B.; Ahmed, M. S.; Garris, C. S.; Pittet, M. J.; Weissleder, R. Development of adamantane-conjugated TLR7/8 agonists for supramolecular delivery and cancer immunotherapy. Theranostics 2019, 9, 8426–8436.

138

Liu, L. L.; He, H. M.; Liang, R. J.; Yi, H. Q.; Meng, X. Q.; Chen, Z. K.; Pan, H.; Ma, Y. F.; Cai, L. T. ROS-inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy. Biomacromolecules 2018, 19, 2146–2155.

139

Huang, Z.; Zhang, Z. P.; Jiang, Y. C.; Zhang, D. C.; Chen, J. N.; Dong, L.; Zhang, J. F. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J. Control. Release 2012, 158, 286–292.

140

Cao, M.; Yan, H. J.; Han, X.; Weng, L.; Wei, Q.; Sun, X. Y.; Lu, W. G.; Wei, Q. Y.; Ye, J.; Cai, X. T. et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth. J. Immunother. Cancer 2019, 7, 326.

141

Song, M. L.; Liu, T.; Shi, C. R.; Zhang, X. Z.; Chen, X. Y. Bioconjugated manganese dioxide nanoparticles enhance chemotherapy response by priming tumor-associated macrophages toward M1-like phenotype and attenuating tumor hypoxia. ACS Nano 2016, 10, 633–647.

142

Gong, T.; Song, X.; Yang, L. Q.; Chen, T. J.; Zhao, T.; Zheng, T.; Sun, X.; Gong, T.; Zhang, Z. R. Spontaneously formed porous structure and M1 polarization effect of Fe3O4 nanoparticles for enhanced antitumor therapy. Int. J. Pharm. 2019, 559, 329–340.

143

Wang, Y.; Lin, Y. X.; Qiao, S. L.; An, H. W.; Ma, Y.; Qiao, Z. Y.; Rajapaksha, R. P. Y. J.; Wang, H. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials 2017, 112, 153–163.

144

Wang, T. Q.; Zhang, J.; Hou, T.; Yin, X. L.; Zhang, N. Selective targeting of tumor cells and tumor associated macrophages separately by twin-like core−shell nanoparticles for enhanced tumor-localized chemoimmunotherapy. Nanoscale 2019, 11, 13934–13946.

145

Wang, Y.; Tiruthani, K.; Li, S. R.; Hu, M. Y.; Zhong, G. J.; Tang, Y.; Roy, S.; Zhang, L.; Tan, J.; Liao, C. H. et al. mRNA delivery of a bispecific single-domain antibody to polarize tumor-associated macrophages and synergize immunotherapy against liver malignancies. Adv. Mater. 2021, 33, 2007603.

146

Ngambenjawong, C.; Gustafson, H. H.; Pun, S. H. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv. Drug Deliv. Rev. 2017, 114, 206–221.

147

Blanco, E.; Shen, H. F.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015, 33, 941–951.

148

Jin, J.; Ovais, M.; Chen, C. Y. Stimulus-responsive gold nanotheranostic platforms for targeting the tumor microenvironment. Nano Today 2018, 22, 83–99.

149

Noh, Y. W.; Kim, S. Y.; Kim, J. E.; Kim, S.; Ryu, J.; Kim, I.; Lee, E.; Um, S. H.; Lim, Y. T. Multifaceted immunomodulatory nanoliposomes: Reshaping tumors into vaccines for enhanced cancer immunotherapy. Adv. Funct. Mater. 2017, 27, 1605398.

150

Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S. W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102.

151

Dhar, S.; Kolishetti, N.; Lippard, S. J.; Farokhzad, O. C. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc. Natl. Acad. Sci. USA 2011, 108, 1850–1855.

152

Allen, T. M.; Cullis, P. R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48.

153

Zhang, N.; Palmer, A. F. Liposomes surface conjugated with human hemoglobin target delivery to macrophages. Biotechnol. Bioeng. 2012, 109, 823–829.

154

Luo, D. D.; Carter, K. A.; Razi, A.; Geng, J. M.; Shao, S.; Giraldo, D.; Sunar, U.; Ortega, J.; Lovell, J. F. Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials 2016, 75, 193–202.

155

Anselmo, A. C.; Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 2016, 1, 10–29.

156

Iyer, A. K.; Su, Y.; Feng, J. J.; Lan, X. L.; Zhu, X. D.; Liu, Y.; Gao, D. W.; Seo, Y.; VanBrocklin, H. F.; Courtney Broaddus, V. et al. The effect of internalizing human single chain antibody fragment on liposome targeting to epithelioid and sarcomatoid mesothelioma. Biomaterials 2011, 32, 2605–2613.

157

Guo, C. L.; Chen, Y. N.; Gao, W. J.; Chang, A. T.; Ye, Y. J.; Shen, W. Z.; Luo, Y. P.; Yang, S. Y.; Sun, P. Q.; Xiang, R. et al. Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics 2017, 7, 775–788.

158

Feng, B.; Tomizawa, K.; Michiue, H.; Han, X. J.; Miyatake, S. I.; Matsui, H. Development of a bifunctional immunoliposome system for combined drug delivery and imaging in vivo . Biomaterials 2010, 31, 4139–4145.

159

Moles, E.; Urbán, P.; Jiménez-Díaz, M. B.; Viera-Morilla, S.; Angulo-Barturen, I.; Busquets, M. A.; Fernàndez-Busquets, X. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J. Control. Release 2015, 210, 217–229.

160

Sun, T. M.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M. X.; Xia, Y. N. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem., Int. Ed. 2014, 53, 12320–12364.

161

Maruyama, K. Intracellular targeting delivery of liposomal drugs to solid tumors based on EPR effects. Adv. Drug Deliv. Rev. 2011, 63, 161–169.

162

Ozcelikkale, A.; Ghosh, S.; Han, B. Multifaceted transport characteristics of nanomedicine: Needs for characterization in dynamic environment. Mol. Pharm. 2013, 10, 2111–2126.

163

Barenholz, Y. Doxil®—the first FDA-approved nano-drug: Lessons learned. J. Control. Release 2012, 160, 117–134.

164

Rajan, R.; Sabnani, M. K.; Mavinkurve, V.; Shmeeda, H.; Mansouri, H.; Bonkoungou, S.; Le, A. D.; Wood, L. M.; Gabizon, A. A.; La-Beck, N. M. Liposome-induced immunosuppression and tumor growth is mediated by macrophages and mitigated by liposome-encapsulated alendronate. J. Control. Release 2018, 271, 139–148.

165

Jose, A.; Labala, S.; Ninave, K. M.; Gade, S. K.; Venuganti, V. V. K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech 2018, 19, 166–175.

166

Stresing, V.; Daubiné, F.; Benzaid, I.; Mönkkö nen, H.; Clézardin, P. Bisphosphonates in cancer therapy. Cancer Lett. 2007, 257, 16–35.

167

He, H. H.; Chiu, A. C.; Kanada, M.; Schaar, B. T.; Krishnan, V.; Contag, C. H.; Dorigo, O. Imaging of tumor-associated macrophages in a transgenic mouse model of orthotopic ovarian cancer. Mol. Imaging Biol. 2017, 19, 694–702.

168

Germano, G.; Frapolli, R.; Belgiovine, C.; Anselmo, A.; Pesce, S.; Liguori, M.; Erba, E.; Uboldi, S.; Zucchetti, M.; Pasqualini, F. et al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell 2013, 23, 249–262.

169

Kurahara, H.; Takao, S.; Kuwahata, T.; Nagai, T.; Ding, Q.; Maeda, K.; Shinchi, H.; Mataki, Y.; Maemura, K.; Matsuyama, T. et al. Clinical significance of folate receptor β–expressing tumor-associated macrophages in pancreatic cancer. Ann. Surg. Oncol. 2012, 19, 2264–2271.

170

Huang, D. C. S.; Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 2000, 103, 839–842.

171

Tie, Y.; Zheng, H.; He, Z. Y.; Yang, J. Y.; Shao, B.; Liu, L.; Luo, M.; Yuan, X.; Liu, Y.; Zhang, X. X. et al. Targeting folate receptor β positive tumor-associated macrophages in lung cancer with a folate-modified liposomal complex. Signal Transduct Target. Ther. 2020, 5, 6.

172

Danhier, F.; Ansorena, E.; Silva, J. M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522.

173

Jung, K.; Heishi, T.; Khan, O. F.; Kowalski, P. S.; Incio, J.; Rahbari, N. N.; Chung, E.; Clark, J. W.; Willett, C. G.; Luster, A. D. et al. Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy. J. Clin. Invest. 2017, 127, 3039–3051.

174

Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1–16.

175

Shen, S.; Zhang, Y.; Chen, K. G.; Luo, Y. L.; Wang, J. Cationic polymeric nanoparticle delivering CCR2 siRNA to inflammatory monocytes for tumor microenvironment modification and cancer therapy. Mol. Pharm. 2018, 15, 3642–3653.

176

Wang, Y. C.; Li, P. W.; Truong-Dinh Tran, T.; Zhang, J.; Kong, L. X. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016, 6, 26.

177

Rao, W.; Wang, H.; Han, J. F.; Zhao, S. T.; Dumbleton, J.; Agarwal, P.; Zhang, W. J.; Zhao, G.; Yu, J. H.; Zynger, D. L. et al. Chitosan-decorated doxorubicin-encapsulated nanoparticle targets and eliminates tumor reinitiating cancer stem-like cells. ACS Nano 2015, 9, 5725–5740.

178

Niu, M. M.; Naguib, Y. W.; Aldayel, A. M.; Shi, Y. C.; Hursting, S. D.; Hersh, M. A.; Cui, Z. R. Biodistribution and in vivo activities of tumor-associated macrophage-targeting nanoparticles incorporated with doxorubicin. Mol. Pharm. 2014, 11, 4425–4436.

179

Zimel, M. N.; Horowitz, C. B.; Rajasekhar, V. K.; Christ, A. B.; Wei, X.; Wu, J. B.; Wojnarowicz, P. M.; Wang, D.; Goldring, S. R.; Purdue, P. E. et al. HPMA-copolymer nanocarrier targets tumor-associated macrophages in primary and metastatic breast cancer. Mol. Cancer Ther. 2017, 16, 2701–2710.

180

Wang, N. X.; von Recum, H. A. Affinity-based drug delivery. Macromol. Biosci. 2011, 11, 321–332.

181

Mealy, J. E.; Rodell, C. B.; Burdick, J. A. Sustained small molecule delivery from injectable hyaluronic acid hydrogels through host-guest mediated retention. J. Mater. Chem. B 2015, 3, 8010–8019.

182

Rodell, C. B.; Arlauckas, S. P.; Cuccarese, M. F.; Garris, C. S.; Li, R.; Ahmed, M. S.; Kohler, R. H.; Pittet, M. J.; Weissleder, R. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588.

183

Neuwelt, E. A.; Várallyay, C. G.; Manninger, S.; Solymosi, D.; Haluska, M.; Hunt, M. A.; Nesbit, G.; Stevens, A.; Jerosch-Herold, M.; Jacobs, P. M. et al. The potential of ferumoxytol nanoparticle magnetic resonance imaging, perfusion, and angiography in central nervous system malignancy: A pilot study. Neurosurgery 2007, 60, 601–612.

184

Daldrup-Link, H. E.; Golovko, D.; Ruffell, B.; Denardo, D. G.; Castaneda, R.; Ansari, C.; Rao, J. H.; Tikhomirov, G. A.; Wendland, M. F.; Corot, C. et al. MRI of tumor-associated macrophages with clinically applicable iron oxide nanoparticles. Clin. Cancer Res. 2011, 17, 5695–5704.

185

Klenk, C.; Gawande, R.; Uslu, L.; Khurana, A.; Qiu, D. Q.; Quon, A.; Donig, J.; Rosenberg, J.; Luna-Fineman, S.; Moseley, M. et al. Ionising radiation-free whole-body MRI versus 18F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: A prospective, non-randomised, single-centre study. Lancet Oncol. 2014, 15, 275–285.

186

Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J. S.; Nejadnik, H.; Goodman, S.; Moseley, M. et al. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat. Nanotechnol. 2016, 11, 986–994.

187

Costa da Silva, M.; Breckwoldt, M. O.; Vinchi, F.; Correia, M. P.; Stojanovic, A.; Thielmann, C. M.; Meister, M.; Muley, T.; Warth, A.; Platten, M. et al. Iron induces anti-tumor activity in tumor-associated macrophages. Front. Immunol. 2017, 8, 1479.

188

Raja, M. R. C.; Vinod Kumar, V.; Srinivasan, V.; Selvaraj, S.; Radhakrishnan, N.; Mukundan, R.; Raghunandan, S.; Anthony, S. P.; Kar Mahapatra, S. ApAGP-fabricated silver nanoparticles induce amendment of murine macrophage polarization. J. Mater. Chem. B 2017, 5, 3511–3520.

189

Chen, Q.; Wang, C.; Zhang, X. D.; Chen, G. J.; Hu, Q. Y.; Li, H. J.; Wang, J. Q.; Wen, D.; Zhang, Y. Q.; Lu, Y. F. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 2019, 14, 89–97.

190

Cannarile, M. A.; Weisser, M.; Jacob, W.; Jegg, A. M.; Ries, C. H.; Rüttinger, D. Colony-stimulating factor 1 receptor (CSF1R) inhibitors in cancer therapy. J. Immunother. Cancer 2017, 5, 53.

191

Li, R. X.; He, Y. W.; Zhang, S. Y.; Qin, J.; Wang, J. X. Cell membrane-based nanoparticles: A new biomimetic platform for tumor diagnosis and treatment. Acta Pharm. Sin. B 2018, 8, 14–22.

192

Wang, H.; Agarwal, P.; Zhao, S. T.; Yu, J. H.; Lu, X. B.; He, X. M. A biomimetic hybrid nanoplatform for encapsulation and precisely controlled delivery of theranostic agents. Nat. Commun. 2015, 6, 10081.

193

Zhao, P. F.; Wang, Y. H.; Kang, X. J.; Wu, A. H.; Yin, W. M.; Tang, Y. S.; Wang, J. Y.; Zhang, M.; Duan, Y. F.; Huang, Y. Z. Dual-targeting biomimetic delivery for anti-glioma activity via remodeling the tumor microenvironment and directing macrophage-mediated immunotherapy. Chem. Sci. 2018, 9, 2674–2689.

194

Parodi, A.; Quattrocchi, N.; van de Ven, A. L.; Chiappini, C.; Evangelopoulos, M.; Martinez, J. O.; Brown, B. S.; Khaled, S. Z.; Yazdi, I. K.; Enzo, M. V. et al. Synthetic nanoparticles functionalized with biomimetic leukocyte membranes possess cell-like functions. Nat. Nanotechnol. 2013, 8, 61–68.

195

Chen, Z.; Zhao, P. F.; Luo, Z. Y.; Zheng, M. B.; Tian, H.; Gong, P.; Gao, G. H.; Pan, H.; Liu, L. L.; Ma, A. Q. et al. Cancer cell membrane–biomimetic nanoparticles for homologous-targeting dual-modal imaging and photothermal therapy. ACS Nano 2016, 10, 10049–10057.

196

Liu, B.; Wang, W. M.; Fan, J. L.; Long, Y.; Xiao, F.; Daniyal, M.; Tong, C. Y.; Xie, Q.; Jian, Y. Q.; Li, B. et al. RBC membrane camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer. Biomaterials 2019, 217, 119301.

197

Jiang, Q.; Luo, Z. M.; Men, Y.; Yang, P.; Peng, H. B.; Guo, R. R.; Tian, Y.; Pang, Z. Q.; Yang, W. L. Red blood cell membrane-camouflaged melanin nanoparticles for enhanced photothermal therapy. Biomaterials 2017, 143, 29–45.

198

Han, S. L.; Wang, W. J.; Wang, S. F.; Wang, S.; Ju, R. J.; Pan, Z. H.; Yang, T. Y.; Zhang, G. F.; Wang, H. M.; Wang, L. Y. Multifunctional biomimetic nanoparticles loading baicalin for polarizing tumor-associated macrophages. Nanoscale 2019, 11, 20206–20220.

199

Wang, B.; He, X.; Zhang, Z. Y.; Zhao, Y. L.; Feng, W. Y. Metabolism of nanomaterials in vivo: Blood circulation and organ clearance. Acc. Chem. Res. 2013, 46, 761–769.

200

Huo, D.; Jiang, X. Q.; Hu, Y. Recent advances in nanostrategies capable of overcoming biological barriers for tumor management. Adv. Mater. 2020, 32, 1904337.

201

Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V.; Gongora, R.; Almendral Parra, M. J.; Manzano-Roman, R.; Fuentes, M. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials 2019, 9, 1365.

202

Zhao, Z. M.; Ukidve, A.; Krishnan, V.; Mitragotri, S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv. Drug Deliv. Rev. 2019, 143, 3–21.

203

Kuhn, D. A.; Vanhecke, D.; Michen, B.; Blank, F.; Gehr, P.; Petri-Fink, A.; Rothen-Rutishauser, B. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages. Beilstein J. Nanotechnol. 2014, 5, 1625–1636.

204

Gu, J. L.; Xu, H. F.; Han, Y. H.; Dai, W.; Hao, W.; Wang, C. Y.; Gu, N.; Xu, H. Y.; Cao, J. M. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Sci. China Life Sci. 2011, 54, 793–805.

205

Yi, X.; Gao, H. J. Phase diagrams and morphological evolution in wrapping of rod-shaped elastic nanoparticles by cell membrane: A two-dimensional study. Phys. Rev. E 2014, 89, 062712.

206

Li, Z.; Sun, L.; Zhang, Y. F.; Dove, A. P.; O'Reilly, R. K.; Chen, G. S. Shape effect of glyco-nanoparticles on macrophage cellular uptake and immune response. ACS Macro Lett. 2016, 5, 1059–1064.

207

Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S. C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol. 2019, 10, 1078.

208

Mollica Poeta, V.; Massara, M.; Capucetti, A.; Bonecchi, R. Chemokines and chemokine receptors: New targets for cancer immunotherapy. Front. Immunol. 2019, 10, 379.

209

Ugel, S.; De Sanctis, F.; Mandruzzato, S.; Bronte, V. Tumor-induced myeloid deviation: When myeloid-derived suppressor cells meet tumor-associated macrophages. J. Clin. Invest. 2015, 125, 3365–3376.

210

He, K. F.; Zhang, L.; Huang, C. F.; Ma, S. R.; Wang, Y. F.; Wang, W. M.; Zhao, Z. L.; Liu, B.; Zhao, Y. F.; Zhang, W. F. et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. BioMed Res. Int. 2014, 2014, 838632.

211

Kosoff, D.; Lang, J. M. Development and translation of novel therapeutics targeting tumor-associated macrophages. Urol. Oncol. 2019, 37, 556–562.

212

Nywening, T. M.; Wang-Gillam, A.; Sanford, D. E.; Belt, B. A.; Panni, R. Z.; Cusworth, B. M.; Toriola, A. T.; Nieman, R. K.; Worley, L. A.; Yano, M. et al. Targeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: A single-centre, open-label, dose-finding, non-randomised, phase 1b trial. Lancet Oncol. 2016, 17, 651–662.

213

Butowski, N.; Colman, H.; De Groot, J. F.; Omuro, A. M.; Nayak, L.; Wen, P. Y.; Cloughesy, T. F.; Marimuthu, A.; Haidar, S.; Perry, A. et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: An Ivy foundation early phase clinical trials consortium phase II study. Neuro-Oncol. 2015, 18, 557–564.

214

Hu, G. R.; Guo, M. F.; Xu, J. J.; Wu, F.; Fan, J. S.; Huang, Q.; Yang, G. H.; Lv, Z. L.; Wang, X.; Jin, Y. Nanoparticles targeting macrophages as potential clinical therapeutic agents against cancer and inflammation. Front. Immunol. 2019, 10, 1998.

215

Conde, J.; Bao, C. C.; Tan, Y. Q.; Cui, D. X.; Edelman, E. R.; Azevedo, H. S.; Byrne, H. J.; Artzi, N.; Tian, F. R. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumour-associated macrophages and cancer cells. Adv. Funct. Mater. 2015, 25, 4183–4194.

216

Gazzaniga, S.; Bravo, A. I.; Guglielmotti, A.; van Rooijen, N.; Maschi, F.; Vecchi, A.; Mantovani, A.; Mordoh, J.; Wainstok, R. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma Xenograft. J. Invest. Dermatol. 2007, 127, 2031–2041.

217

Alupei, M. C.; Licarete, E.; Patras, L.; Banciu, M. Liposomal simvastatin inhibits tumor growth via targeting tumor-associated macrophages-mediated oxidative stress. Cancer Lett. 2015, 356, 946–952.

218

Kulkarni, A.; Chandrasekar, V.; Natarajan, S. K.; Ramesh, A.; Pandey, P.; Nirgud, J.; Bhatnagar, H.; Ashok, D.; Ajay, A. K.; Sengupta, S. A designer self-assembled supramolecule amplifies macrophage immune responses against aggressive cancer. Nat. Biomed. Eng. 2018, 2, 589–599.

219
Sriraman, S. K.; Torchilin, V. P. Recent advances with liposomes as drug carriers. In Advanced Biomaterials and Biodevices. Tiwari, A.; Nordin, A. N., Eds.; Wiley: Hoboken, 2014; pp 79–119.https://doi.org/10.1002/9781118774052.ch3
DOI
220

Wang, Y.; Guo, G. X.; Feng, Y. X.; Long, H. Y.; Ma, D. L.; Leung, C. H.; Dong, L.; Wang, C. M. A tumour microenvironment-responsive polymeric complex for targeted depletion of tumour-associated macrophages (TAMs). J. Mater. Chem. B. 2017, 5, 7307–7318.

221

Ramesh, A.; Kumar, S.; Nandi, D.; Kulkarni, A. CSF1R- and SHP2-inhibitor-loaded nanoparticles enhance cytotoxic activity and phagocytosis in tumor-associated macrophages. Adv. Mater. 2019, 31, 1904364.

222

Parayath, N. N.; Parikh, A.; Amiji, M. M. Repolarization of tumor-associated macrophages in a genetically engineered nonsmall cell lung cancer model by intraperitoneal administration of hyaluronic acid-based nanoparticles encapsulating MicroRNA-125b. Nano Lett. 2018, 18, 3571–3579.

223

Parayath, N. N.; Gandham, S. K.; Leslie, F.; Amiji, M. M. Improved anti-tumor efficacy of paclitaxel in combination with MicroRNA-125b-based tumor-associated macrophage repolarization in epithelial ovarian cancer. Cancer Lett. 2019, 461, 1–9.

224

Liu, Q.; Chen, F. Q.; Hou, L.; Shen, L. M.; Zhang, X. Q.; Wang, D. G.; Huang, L. Nanocarrier-mediated chemo-immunotherapy arrested cancer progression and induced tumor dormancy in desmoplastic melanoma. ACS Nano 2018, 12, 7812–7825.

225

Muraoka, D.; Seo, N.; Hayashi, T.; Tahara, Y.; Fujii, K.; Tawara, I.; Miyahara, Y.; Okamori, K.; Yagita, H.; Imoto, S. et al. Antigen delivery targeted to tumor-associated macrophages overcomes tumor immune resistance. J. Clin. Invest. 2019, 129, 1278–1294.

226

Shi, C. R.; Liu, T.; Guo, Z. D.; Zhuang, R. Q.; Zhang, X. Z.; Chen, X. Y. Reprogramming tumor-associated macrophages by nanoparticle-based reactive oxygen species photogeneration. Nano Lett. 2018, 18, 7330–7342.

227

Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

228

Abdelwahab, W. M.; Phillips, E.; Patonay, G. Preparation of fluorescently labeled silica nanoparticles using an amino acid-catalyzed seeds regrowth technique: Application to latent fingerprints detection and hemocompatibility studies. J. Colloid Interface Sci. 2018, 512, 801–811.

229

Li, K.; Lu, L.; Xue, C. C.; Liu, J.; He, Y.; Zhou, J.; Xia, Z. Z. L.; Dai, L. L.; Luo, Z.; Mao, Y. L. et al. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. Nanoscale 2020, 12, 130–144.

230

Wang, H. R.; Tang, Y. S.; Fang, Y. F.; Zhang, M.; Wang, H. Y.; He, Z. D.; Wang, B.; Xu, Q.; Huang, Y. Z. Reprogramming tumor immune microenvironment (TIME) and metabolism via biomimetic targeting codelivery of shikonin/JQ1. Nano Lett. 2019, 19, 2935–2944.

231

Mo, X.; Zheng, Z.; He, Y.; Zhong, H.; Kang, X.; Shi, M.; Liu, T.; Jiao, Z.; Huang, Y. Antiglioma via regulating oxidative stress and remodeling tumor-associated macrophage using lactoferrin-mediated biomimetic codelivery of simvastatin/fenretinide. J Control Release 2018, 287, 12–23.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 June 2021
Revised: 22 July 2021
Accepted: 25 July 2021
Published: 23 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the Excellent Youth Foundation of the Sichuan Scientific Committee Grant in China (No. 2019JDJQ008) and the National Natural Science Foundation for Regional Innovation and Development (No. U19A2003).

Return