AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Alloxazine as anode material for high-performance aqueous ammonium-ion battery

Yuan Ma1Tianjiang Sun1Qingshun Nian2Shibing Zheng1Tao Ma1Qiaoran Wang1Haihui Du1Zhanliang Tao1( )
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Show Author Information

Graphical Abstract

Abstract

Aqueous ammonium-ion battery (AAIB) has attracted much attention due to its low cost, safety, and environmental friendliness, but its electrode materials have many limitations. Here, alloxazine (ALO) is introduced as the anode for the AAIB. With its pseudocapacitive effect and fast diffusion kinetics of NH4+, ALO anode shows excellent rate performance with a specific capacity of 120 mAh/g at 40 C (10 A/g). The full battery is further fabricated by ALO anode and Prussian white analogs cathode. Its specific capacity can reach 110 mAh/g and it can work up to 10, 000 cycles with no obvious capacity fading at 20 C (5 A/g). In addition, the system delivers a high energy density of 122.5 Wh/kg and a power density of 5, 055 W/kg. This work broadens the application prospect of the AAIB.

References

1

Kim, H.; Hong, J.; Park, K. Y.; Kim, H.; Kim, S. W.; Kang, K. Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 2014, 114, 11788–11827.

2

Wang, G. J.; Fu, L. J.; Zhao, N. H.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. An aqueous rechargeable lithium battery with good cycling performance. Angew. Chem., Int. Ed. 2006, 46, 295–297.

3

Tang, W.; Liu, L. L.; Zhu, Y. S.; Sun, H.; Wu, Y. P.; Zhu, K. An aqueous rechargeable lithium battery of excellent rate capability based on a nanocomposite of MoO3 coated with PPy and LiMn2O4. Energy Environ. Sci. 2012, 5, 6909–6913.

4

Suo, L. M.; Borodin, O.; Sun, W.; Fan, X. L.; Yang, C. Y.; Wang, F.; Gao, T.; Ma, Z. H.; Schroeder, M.; Von Cresce, A. et al. Advanced high-voltage aqueous lithium-ion battery enabled by “water-in-bisalt” electrolyte. Angew. Chem., Int. Ed. 2016, 55, 7136–7141.

5

Gao, H. C.; Goodenough, J. B. An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem., Int. Ed. 2016, 55, 12768–12772.

6

Suo, L. M.; Borodin, O.; Wang, Y. S.; Rong, X. H.; Sun, W.; Fan, X. L.; Xu, S. Y.; Schroeder, M. A.; Cresce, A. V.; Wang, F. et al. “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 2017, 7, 1701189.

7

Su, D. W.; McDonagh, A.; Qiao, S. Z.; Wang, G. X. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv. Mater. 2017, 29, 1604007.

8

Leonard, D. P.; Wei, Z. X.; Chen, G.; Du, F.; Ji, X. L. Water-in-salt electrolyte for potassium-ion batteries. ACS Energy Lett. 2018, 3, 373–374.

9

Jiang, L. W.; Lu, Y. X.; Zhao, C. L.; Liu, L. L.; Zhang, J. N.; Zhang, Q. Q.; Shen, X.; Zhao, J. M.; Yu, X. Q.; Li, H. et al. Building aqueous K-ion batteries for energy storage. Nat. Energy 2019, 4, 495–503.

10

Chen, L.; Bao, J. L.; Dong, X.; Truhlar, D. G.; Wang, Y.; Wang, C.; Xia, Y. Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett. 2017, 2, 1115–1121.

11

Zhao, Q.; Zachman, M. J.; Al Sadat, W. I.; Zheng, J. X.; Kourkoutis, L. F.; Archer, L. Solid electrolyte interphases for high-energy aqueous aluminum electrochemical cells. Sci. Adv. 2018, 4, eaau8131.

12

Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

13

Yan, M. Y.; He, P.; Chen, Y.; Wang, S. Y.; Wei, Q. L.; Zhao, K. N.; Xu, X.; An, Q. Y.; Shuang, Y.; Shao, Y. Y. et al. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv. Mater. 2018, 30, 1703725.

14

Ma, L. T.; Chen, S. M.; Long, C. B.; Li, X. L.; Zhao, Y. W.; Liu, Z. X.; Huang, Z. D.; Dong, B. B.; Zapien, J. A.; Zhi, C. Y. Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv. Energy Mater. 2019, 9, 1902446.

15

Jia, D. D.; Zheng, K.; Song, M.; Tan, H.; Zhang, A. T.; Wang, L. H.; Yue, L. J.; Li, D.; Li, C. W.; Liu, J. Q. VO2·0.2H2O nanocuboids anchored onto graphene sheets as the cathode material for ultrahigh capacity aqueous zinc ion batteries. Nano Res. 2020, 13, 215–224.

16

Du, Y. H.; Wang, X. Y.; Sun, J. C. Tunable oxygen vacancy concentration in vanadium oxide as mass-produced cathode for aqueous zinc-ion batteries. Nano Res. 2021, 14, 754–761.

17

Liang, G. J.; Mo, F. N.; Ji, X. L.; Zhi, C. Y. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 2021, 6, 109–123.

18

Wessells, C. D.; Peddada, S. V.; McDowell, M. T.; Huggins, R. A.; Cui, Y. The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes. J. Electrochem. Soc. 2011, 159, A98–A103.

19

Wu, X. Y.; Qi, Y. T.; Hong, J. J.; Li, Z. F.; Hernandez, A. S.; Ji, X. L. Rocking-chair ammonium-ion battery: A highly reversible aqueous energy storage system. Angew. Chem., Int. Ed. 2017, 56, 13026–13030.

20

Wu, X. Y.; Xu, Y. K.; Jiang, H.; Wei, Z. X.; Hong, J. J.; Hernandez, A. S.; Du, F.; Ji, X. L. NH4+ topotactic insertion in Berlin green: An exceptionally long-cycling cathode in aqueous ammonium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 3077–3083.

21

Holoubek, J. J.; Jiang, H.; Leonard, D.; Qi, Y. T.; Bustamante, G. C.; Ji, X. L. Amorphous titanic acid electrode: Its electrochemical storage of ammonium in a new water-in-salt electrolyte. Chem. Commun. 2018, 54, 9805–9808.

22

Dong, S. Y.; Shin, W.; Jiang, H.; Wu, X. Y.; Li, Z. F.; Holoubek, J.; Stickle, W. F.; Key, B.; Liu, C.; Lu, J. et al. Ultra-fast NH4+ storage: Strong H bonding between NH4+ and bi-layered V2O5. Chem 2019, 5, 1537–1551.

23

Li, C. Y.; Yan, W. Q.; Liang, S. S.; Wang, P.; Wang, J.; Fu, L. J.; Zhu, Y. S.; Chen, Y. H.; Wu, Y. P.; Huang, W. Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage. Nanoscale Horiz. 2019, 4, 991–998.

24

Li, H.; Yang, J.; Cheng, J. L.; He, T.; Wang, B. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy 2020, 68, 104369.

25

Liang, G. J.; Wang, Y. L.; Huang, Z. D.; Mo, F. N.; Li, X. L.; Yang, Q.; Wang, D. H.; Li, H. F.; Chen, S. M.; Zhi, C. Y. Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry. Adv. Mater. 2020, 32, 1907802.

26

Song, Y.; Pan, Q.; Lv, H. Z.; Yang, D.; Qin, Z. M.; Zhang, M. Y.; Sun, X. Q.; Liu, X. X. Ammonium-ion storage using electrodeposited manganese oxides. Angew. Chem., Int. Ed. 2021, 60, 5718–5722.

27

Singh, V.; Kim, S.; Kang, J.; Byon, H. R. Aqueous organic redox flow batteries. Nano Res. 2019, 12, 1988–2001.

28

Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

29

Hong, J.; Lee, M.; Lee, B.; Seo, D. H.; Park, C. B.; Kang, K. Biologically inspired pteridine redox centres for rechargeable batteries. Nat. Commun. 2014, 5, 5335.

30

Zhong, L. Q.; Lu, Y.; Li, H. X.; Tao, Z. L.; Chen, J. High-performance aqueous sodium-ion batteries with hydrogel electrolyte and alloxazine/CMK-3 anode. ACS Sustainable Chem. Eng. 2018, 6, 7761–7768.

31

Cheng, L. W.; Liang, Y. H.; Zhu, Q. N.; Yu, D. D.; Chen, M. X.; Liang, J. F.; Wang, H. Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem. Asian J. 2020, 15, 1290–1295.

32

Sun, T. J.; Liu, C.; Xu, X. F.; Nian, Q. S.; Zheng, S. B.; Hou, X. S.; Liang, J.; Tao, Z. L. Insights into the hydronium-ion storage of alloxazine in mild electrolyte. J. Mater. Chem. A 2020, 8, 21983–21987.

33

Chen, S.; Foss, F. W. Jr. Aerobic organocatalytic oxidation of aryl aldehydes: Flavin catalyst turnover by Hantzsch’s ester. Org. Lett. 2012, 14, 5150–5153.

34

Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

35
Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications; 2nd ed. John Wiley & Sons, Inc. : New York, 2001.
36

Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 1882–1888.

Nano Research
Pages 2047-2051
Cite this article:
Ma Y, Sun T, Nian Q, et al. Alloxazine as anode material for high-performance aqueous ammonium-ion battery. Nano Research, 2022, 15(3): 2047-2051. https://doi.org/10.1007/s12274-021-3777-1
Topics:

982

Views

62

Crossref

57

Web of Science

55

Scopus

2

CSCD

Altmetrics

Received: 10 June 2021
Revised: 13 July 2021
Accepted: 26 July 2021
Published: 17 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return