Journal Home > Volume 15 , Issue 3

Potassium-ion batteries (PIBs) are of academic and economic significance, but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions. Herein, an interconnected nitrogen/sulfur co-doped carbon nanosheep bundle (N/S-CSB) was proposed as the potassium ions storage material. The rich co-doping of nitrogen/sulfur of N/S-CNB with three-dimensional hierarchical bundled array structure yields distensible interlayer spaces to buffer the volume expansion during K+ insertion/extraction, offers more electrochemical active sites to obtain a high specific capacity, and provides efficient channels for fast ion/electron transports. Therefore, the N/S-CSB anode achieved high reversible specific capacity of 365 mAh/g obtained at 50 mA/g after 200 cycles with a coulombic efficiency (CE) close to 100%, high rate performance and long cycle stability. Moreover, the in-situ Raman spectra indicated outstanding reaction kinetics of as-prepared N/S-CSB anode.


menu
Abstract
Full text
Outline
About this article

N/S co-doped carbon nanosheet bundles as high-capacity anode for potassium-ion battery

Show Author's information Jinhui Cao1Jiang Zhong1Hanjiao Xu1Shengyang Li1Hongli Deng1Tao Wang1Ling Fan2Xinghui Wang3Lei Wang1( )Jian Zhu1( )Bingan Lu2Xidong Duan1( )
Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
School of Physics and Electronics, Hunan University, Changsha 410082, China
College of Physics and Information Engineering, Institute of Micro-Nano Devices and Solar Cells, Fuzhou University, Fuzhou 350108, China

Abstract

Potassium-ion batteries (PIBs) are of academic and economic significance, but still limited by the lack of highly active electrode materials for de-/intercalation of large-radius K ions. Herein, an interconnected nitrogen/sulfur co-doped carbon nanosheep bundle (N/S-CSB) was proposed as the potassium ions storage material. The rich co-doping of nitrogen/sulfur of N/S-CNB with three-dimensional hierarchical bundled array structure yields distensible interlayer spaces to buffer the volume expansion during K+ insertion/extraction, offers more electrochemical active sites to obtain a high specific capacity, and provides efficient channels for fast ion/electron transports. Therefore, the N/S-CSB anode achieved high reversible specific capacity of 365 mAh/g obtained at 50 mA/g after 200 cycles with a coulombic efficiency (CE) close to 100%, high rate performance and long cycle stability. Moreover, the in-situ Raman spectra indicated outstanding reaction kinetics of as-prepared N/S-CSB anode.

Keywords: high capacity, anode, long cycle, potassium-ion battery, carbon nanosheet bundles, N/S co-doping

References(40)

1

Liu, K.; Liu, Y. Y.; Lin, D. C.; Pei, A.; Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 2018, 4, eaas9820.

2

Jia, J. C.; Hu, X.; Wen, Z. H. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes. Nano Res. 2018, 11, 1135–1145.

3

Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550.

4

Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243–1295.

5

Seong, W. M.; Park, K. Y.; Lee, M. H.; Moon, S.; Oh, K.; Park, H.; Lee, S.; Kang, K. Abnormal self-discharge in lithium-ion batteries. Energy Environ. Sci. 2018, 11, 970–978.

6

Xie, J.; Lu, Y. C. A retrospective on lithium-ion batteries. Nat. Commun. 2020, 11, 2499.

7

Zhang, W.; Yin, J.; Zhang, P.; Tang, X. Q.; Ding, Y. H. Two-dimensional phosphorus carbide as a promising anode material for lithium-ion batteries. J. Mater. Chem. A 2018, 6, 12029–12037.

8

Zhou, J.; Chen, M. X.; Wang, T.; Li, S. Y.; Zhang, Q. S.; Zhang, M.; Xu, H. J.; Liu, J. L.; Liang, J. F.; Zhu, J. et al. Covalent selenium embedded in hierarchical carbon nanofibers for ultra-high areal capacity Li-Se batteries. iScience 2020, 23, 100919.

9

Cao, J. H.; Xu, H. J.; Zhong, J.; Li, X. Q.; Li, S. Y.; Wang, Y. Y.; Zhang, M.; Deng, H. L.; Wang, Y. L.; Cui, C. Y. et al. Dual-carbon electrode-based high-energy-density potassium-ion hybrid capacitor. ACS Appl. Mater. Interfaces 2021, 13, 8497–8506.

10

Chen, J. T.; Yang, B. J.; Li, H. X.; Ma, P. J.; Lang, J. W.; Yan, X. B. Candle soot: Onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. J. Mater. Chem. A 2019, 7, 9247–9252.

11

Deng, L. Q.; Niu, X. G.; Ma, G. S.; Yang, Z.; Zeng, L.; Zhu, Y. J.; Guo, L. Layered potassium vanadate K0.5V2O5 as a cathode material for nonaqueous potassium ion batteries. Adv. Funct. Mater. 2018, 28, 1800670.

12

Fan, L.; Ma, R. F.; Zhang, Q. F.; Jia, X. X.; Lu, B. A. Graphite anode for a potassium-ion battery with unprecedented performance. Angew. Chem., Int. Ed. 2019, 58, 10500–10505.

13

Gao, L.; Wang, Z. J.; Hu, H.; Cheng, H. Y.; Zhang, L. L.; Yang, X. L. Nitrogen-doped carbon microfiber networks decorated with CuO/Cu clusters as self-supported anode materials for potassium ion batteries. J. Electroanal. Chem. 2020, 876, 114483.

14

Luo, H. Y.; Chen, M. X.; Cao, J. H.; Zhang, M.; Tan, S.; Wang, L.; Zhong, J.; Deng, H. L.; Zhu, J.; Lu, B. A. Cocoon silk-derived, hierarchically porous carbon as anode for highly robust potassium-ion hybrid capacitors. Nano-Micro Lett. 2020, 12, 113.

15

Chang, X. Q.; Zhou, X. L.; Ou, X. W.; Lee, C. S.; Zhou, J. W.; Tang, Y. B. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv. Energy Mater. 2019, 9, 1902672.

16

Ding, J.; Zhang, H. L.; Zhou, H.; Feng, J.; Zheng, X. R.; Zhong, C.; Paek, E.; Hu, W. B.; Mitlin, D. Sulfur-grafted hollow carbon spheres for potassium-ion battery anodes. Adv. Mater. 2019, 31, 1900429.

17

Ji, B. F.; Zhang, F.; Song, X. H.; Tang, Y. B. A novel potassium-ion-based dual-ion battery. Adv. Mater. 2017, 29, 1700519.

18

Chen, M. X.; Wang, L.; Sheng, X. H.; Wang, T.; Zhou, J.; Li, S. Y.; Shen, X. H.; Zhang, M.; Zhang, Q. S.; Yu, X. Z. et al. An ultrastable nonaqueous potassium-ion hybrid capacitor. Adv. Funct. Mater. 2020, 30, 2004247.

19

Ruan, J. F.; Mo, F. J.; Chen, Z. L.; Liu, M.; Zheng, S. Y.; Wu, R. B.; Fang, F.; Song, Y.; Sun, D. L. Rational construction of nitrogen-doped hierarchical dual-carbon for advanced potassium-ion hybrid capacitors. Adv. Energy Mater. 2020, 10, 1904050.

20

Wang, L. P.; Yang, J. Y.; Li, J.; Chen, T.; Chen, S. L.; Wu, Z. R.; Qiu, J. L.; Wang, B. J.; Gao, P.; Niu, X. B. et al. Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. J. Power Sources 2019, 409, 24–30.

21

Liu, Y. W.; Gao, C.; Dai, L.; Deng, Q. B.; Wang, L.; Luo, J. Y.; Liu, S.; Hu, N. The features and progress of electrolyte for potassium ion batteries. Small 2020, 16, 2004096.

22

Rajagopalan, R.; Tang, Y. E.; Ji, X. B.; Jia, C. K.; Wang, H. Y. Advancements and challenges in potassium ion batteries: A comprehensive review. Adv. Funct. Mater. 2020, 30, 1909486.

23

Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

24

Liu, Y. Z.; Yang, C. H.; Pan, Q. C.; Li, Y. P.; Wang, G.; Ou, X.; Zheng, F. H.; Xiong, X. H.; Liu, M. L.; Zhang, Q. Y. Nitrogen-doped bamboo-like carbon nanotubes as anode material for high performance potassium ion batteries. J. Mater. Chem. A 2018, 6, 15162–15169.

25

Tai, Z. X.; Zhang, Q.; Liu, Y. J.; Liu, H. K.; Dou, S. X. Activated carbon from the graphite with increased rate capability for the potassium ion battery. Carbon 2017, 123, 54–61.

26

Fan, L.; Liu, Q.; Chen, S. H.; Lin, K. R.; Xu, Z.; Lu, B. A. Potassium-based dual ion battery with dual-graphite electrode. Small 2017, 13, 1701011.

27

Cohn, A. P.; Muralidharan, N.; Carter, R.; Share, K.; Oakes, L.; Pint, C. L. Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons. J. Mater. Chem. A 2016, 4, 14954–14959.

28

Liu, Y.; Lu, Y. X.; Xu, Y. S.; Meng, Q. S.; Gao, J. C.; Sun, Y. G.; Hu, Y. S.; Chang, B. B.; Liu, C. T.; Cao, A. M. Pitch-derived soft carbon as stable anode material for potassium ion batteries. Adv. Mater. 2020, 32, 2000505.

29

Ma, G. Y.; Li, C. J.; Liu, F.; Majeed, M. K.; Feng, Z. Y.; Cui, Y. H.; Yang, J.; Qian, Y. T. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018, 10, 241–248.

30

Ma, X. Q.; Xiao, N.; Xiao, J.; Song, X. D.; Guo, H. D.; Wang, Y. T.; Zhao, S. J.; Zhong, Y. P.; Qiu, J. S. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon 2021, 179, 33–41.

31

Miao, W. F.; Zhao, X. Y.; Wang, R.; Liu, Y. Q.; Li, L.; Zhang, Z. S.; Zhang, W. M. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: A promising anode for potassium ion battery. J. Colloid Interface Sci. 2019, 556, 432–440.

32

Zeng, S. F.; Zhou, X. F.; Wang, B.; Feng, Y. Z.; Xu, R.; Zhang, H. B.; Peng, S. M.; Yu, Y. Freestanding CNT-modified graphitic carbon foam as a flexible anode for potassium ion batteries. J. Mater. Chem. A 2019, 7, 15774–15781.

33

Zhang, G.; Ou, X. W.; Cui, C. Y.; Ma, J. M.; Yang, J. H.; Tang, Y. B. High-performance cathode based on self-templated 3D porous microcrystalline carbon with improved anion adsorption and intercalation. Adv. Funct. Mater. 2019, 29, 1806722.

34

Zheng, J. F.; Wu, Y. J.; Sun, Y. J.; Rong, J. H.; Li, H. Y.; Niu, L. Advanced anode materials of potassium ion batteries: From zero dimension to three dimensions. Nano-Micro Lett. 2021, 13, 12.

35

Qiao, Y.; Ma, M. Y.; Liu, Y.; Li, S.; Lu, Z. S.; Yue, H. Y.; Dong, H. Y.; Cao, Z. X.; Yin, Y. H.; Yang, S. T. First-principles and experimental study of nitrogen/sulfur co-doped carbon nanosheets as anodes for rechargeable sodium ion batteries. J. Mater. Chem. A 2016, 4, 15565–15574.

36

Shen, Y. P.; Huang, C.; Li, Y. H.; Zhou, Y.; Xu, Y. L.; Zhang, Y.; Hu, A. P.; Tang, Q. L.; Song, X. Y.; Jiang, C. Z. et al. Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped strategy. Electrochim. Acta 2021, 367, 137526.

37

Xu, L. H.; Guo, W. T.; Zeng, L. X.; Xia, X. S.; Wang, Y. Y.; Xiong, P. X.; Chen, Q. H.; Zhang, J. M.; Wei, M. D.; Qian, Q. R. V3Se4 embedded within N/P co-doped carbon fibers for sodium/potassium ion batteries. Chem. Eng. J. 2021, 419, 129607.

38

Yang, L. P.; Zhang, Z. H.; Xia, L. S.; Zhao, Y. F.; Li, F.; Zhang, X.; Wei, J. P.; Zhou, Z. Integrated insights into Na+ storage mechanism and electrochemical kinetics of ultrafine V2O3/S and N co-doped rGO composites as anodes for sodium ion batteries. J. Mater. Chem. A 2019, 7, 22429–22435.

39

Yang, W. X.; Zhou, J. H.; Wang, S.; Wang, Z. C.; Lv, F.; Zhang, W. S.; Zhang, W. Y.; Sun, Q.; Guo, S. J. A three-dimensional carbon framework constructed by N/S co-doped graphene nanosheets with expanded interlayer spacing facilitates potassium ion storage. ACS Energy Lett. 2020, 5, 1653–1661.

40

Cui, C. Y.; Wang, H.; Wang, M.; Ou, X. W.; Wei, Z. X.; Ma, J. M.; Tang, Y. B. Hollow carbon nanobelts Co-doped with nitrogen and sulfur via a self-templated method for a high-performance sodium-ion capacitor. Small 2019, 15, 1902659.

Publication history
Copyright
Acknowledgements

Publication history

Received: 20 May 2021
Revised: 15 July 2021
Accepted: 25 July 2021
Published: 13 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

Jian Zhu acknowledges support by the National Natural Science Foundation of China (Nos. 52074113 and 22005091), the Fundamental Research Funds of the Central Universities (No. 531107051048). Xidong Duan acknowledges support by the National Natural Science Foundation of China (No. 51872086), and the Hunan Key Laboratory of Two-Dimensional Materials (No. 2018TP1010) and the Innovative Research Groups of Hunan Province (No. 2020JJ1001)

Return