Journal Home > Volume 15 , Issue 3

A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections. In this study, conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A (H1N1) virus. The distinctive property of a conductive polymer that transduces stimulus to respond, enabled immediate optical signal processing for the specific recognition of H1N1 virus. Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles, functionalized with peptides, were fabricated for the specific recognition of H1N1 virus. The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers, facilitating the viral titer-dependent production of the optical response. The optical response of the detection system to the binding event with H1N1, a mechanical stimulation, was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min. The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group, H3N2. Therefore, the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1.


menu
Abstract
Full text
Outline
About this article

Rapid detection of influenza A (H1N1) virus by conductive polymer-based nanoparticle via optical response to virus-specific binding

Show Author's information Geunseon Park1,§Hyun-Ouk Kim2,3,§Jong-Woo Lim1Chaewon Park1Minjoo Yeom4Daesub Song4( )Seungjoo Haam1( )
Department of Chemical & Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
Division of Chemical Engineering and Bioengineering College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do 24341, Republic of Korea
Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
College of Pharmacy, Korea University, Sejong 30019, Republic of Korea

§ Geunseon Park and Hyun-Ouk Kim contributed equally to this work.

Abstract

A recurrent pandemic with unpredictable viral nature has implied the need for a rapid diagnostic technology to facilitate timely and appropriate countermeasures against viral infections. In this study, conductive polymer-based nanoparticles have been developed as a tool for rapid diagnosis of influenza A (H1N1) virus. The distinctive property of a conductive polymer that transduces stimulus to respond, enabled immediate optical signal processing for the specific recognition of H1N1 virus. Conductive poly(aniline-co-pyrrole)-encapsulated polymeric vesicles, functionalized with peptides, were fabricated for the specific recognition of H1N1 virus. The low solubility of conductive polymers was successfully improved by employing vesicles consisting of amphiphilic copolymers, facilitating the viral titer-dependent production of the optical response. The optical response of the detection system to the binding event with H1N1, a mechanical stimulation, was extensively analyzed and provided concordant information on viral titers of H1N1 virus in 15 min. The specificity toward the H1N1 virus was experimentally demonstrated via a negative optical response against the control group, H3N2. Therefore, the designed system that transduces the optical response to the target-specific binding can be a rapid tool for the diagnosis of H1N1.

Keywords: optical property, conductive polymer, influenza A (H1N1) virus, rapid detection

References(56)

1

Smith, G. J. D.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G.; Ma, S. K.; Cheung, C. L.; Raghwani, J.; Bhatt, S. et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125.

2

Vijaykrishna, D.; Smith, G. J. D.; Pybus, O. G.; Zhu, H. C.; Bhatt, S.; Poon, L. L. M.; Riley, S.; Bahl, J.; Ma, S. K.; Cheung, C. L. et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 2011, 473, 519–522.

3

Wonderlich, E. R.; Swan, Z. D.; Bissel, S. J.; Hartman, A. L.; Carney, J. P.; O'Malley, K. J.; Obadan, A. O.; Santos, J.; Walker, R.; Sturgeon, T. J. et al. Widespread virus replication in alveoli drives acute respiratory distress syndrome in aerosolized H5N1 influenza infection of macaques. J. Immunol. 2017, 198, 1616–1626.

4

Grubaugh, N. D.; Ladner, J. T.; Lemey, P.; Pybus, O. G.; Rambaut, A.; Holmes, E. C.; Andersen, K. G. Tracking virus outbreaks in the twenty-first century. Nat. Microbiol. 2019, 4, 10–19.

5

Parvez, M. K.; Parveen, S. Evolution and emergence of pathogenic viruses: Past, present, and future. Intervirology 2017, 60, 1–7.

6

Ke, C. W.; Mok, C. K. P.; Zhu, W. F.; Zhou, H. B.; He, J. F.; Guan, W. D.; Wu, J.; Song, W. J.; Wang, D. Y.; Liu, J. X. et al. Human infection with highly pathogenic avian influenza A(H7N9) virus, China. Emerg. Infect. Dis. 2017, 23, 1332–1340.

7

Tang, J.; Zhang, J.; Zhou, J. F.; Zhu, W. F.; Yang, L.; Zou, S. M.; Wei, H. J.; Xin, L.; Huang, W. J.; Li, X. Y. et al. Highly pathogenic avian influenza H7N9 viruses with reduced susceptibility to neuraminidase inhibitors showed comparable replication capacity to their sensitive counterparts. Virol. J. 2019, 16, 87.

8

Kosack, C. S.; Page, A. L.; Klatser, P. R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639–645.

9

Land, K. J.; Boeras, D. I.; Chen, X. S.; Ramsay, A. R.; Peeling, R. W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54.

10

Mahony, J. B.; Petrich, A.; Smieja, M. Molecular diagnosis of respiratory virus infections. Crit. Rev. Clin. Lab. Sci. 2011, 48, 217–249.

11

Brittain-Long, R.; Andersson, L. M.; Olofsson, S.; Lindh, M.; Westin, J. Seasonal variations of 15 respiratory agents illustrated by the application of a multiplex polymerase chain reaction assay. Scand. J. Infect. Dis. 2012, 44, 9–17.

12

Kang, X. P.; Li, Y. C.; Fan, L.; Lin, F.; Wei, J. J.; Zhu, X. L.; Hu, Y.; Li, J.; Chang, G. H.; Zhu, Q. Y. et al. Development of an ELISA-array for simultaneous detection of five encephalitis viruses. Virol. J. 2012, 9, 56.

13

Cho, C. H.; Woo, M. K.; Kim, J. Y.; Cheong, S.; Lee, C. K.; An, S. A.; Lim, C. S.; Kim, W. J. Evaluation of five rapid diagnostic kits for influenza A/B virus. J. Virol. Methods 2013, 187, 51–56.

14

Boonham, N.; Kreuze, J.; Winter, S.; van der Vlugt, R.; Bergervoet, J.; Tomlinson, J.; Mumford, R. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 2014, 186, 20–31.

15

Krammer, F.; Smith, G. J. D.; Fouchier, R. A. M.; Peiris, M.; Kedzierska, K.; Doherty, P. C.; Palese, P.; Shaw, M. L.; Treanor, J.; Webster, R. G. et al. Influenza. Nat. Rev. Dis. Primers 2018, 4, 3.

16

Zumla, A.; Al-Tawfiq, J. A.; Enne, V. I.; Kidd, M.; Drosten, C.; Breuer, J.; Muller, M. A.; Hui, D.; Maeurer, M.; Bates, M. et al. Rapid point of care diagnostic tests for viral and bacterial respiratory tract infections—needs, advances, and future prospects. Lancet Infect. Dis. 2014, 14, 1123–1135.

17

Chan, W. C. W. Nano research for covid-19. ACS Nano 2020, 14, 3719–3720.

18

Bang, D.; Chang, Y. W.; Park, J.; Lee, J.; Yoo, K. H.; Huh, Y. M.; Haam, S. Fabrication of a near-infrared sensor using a polyaniline conducting polymer thin film. Thin Solid Films 2012, 520, 6818–6821.

19

Choi, J.; Hong, Y.; Lee, E.; Kim, M. H.; Yoon, D. S.; Suh, J.; Huh, Y.; Haam, S.; Yang, J. Redox-sensitive colorimetric polyaniline nanoprobes synthesized by a solvent-shift process. Nano Res. 2013, 6, 356–364.

20

Balint, R.; Cassidy, N. J.; Cartmell, S. H. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomater. 2014, 10, 2341–2353.

21

Lee, T.; Bang, D.; Park, Y.; Chang, Y. W.; Kang, B.; Kim, J.; Suh, J. S.; Huh, Y. M.; Haam, S. Synthesis of stable magnetic polyaniline nanohybrids with pyrene as a cross-linker for simultaneous diagnosis by magnetic resonance imaging and photothermal therapy. Eur. J. Inorg. Chem. 2015, 2015, 3740–3747.

22

Uram, J. D.; Ke, K.; Hunt, A. J.; Mayer, M. Submicrometer pore-based characterization and quantification of antibody-virus interactions. Small 2006, 2, 967–972.

23

Veetil, J. V.; Ye, K. Development of immunosensors using carbon nanotubes. Biotechnol. Prog. 2007, 23, 517–531.

24

Silva, M. M. S.; Dias, A. C. M. S.; Silva, B. V. M.; Gomes-Filho, S. L. R.; Kubota, L. T.; Goulart, M. O. F.; Dutra, R. F. Electrochemical detection of dengue virus NS1 protein with a poly(allylamine)/carbon nanotube layered immunoelectrode. J. Chem. Technol. Biotechnol. 2015, 90, 194–200.

25
Min, H. G.; Kim, J. G.; Jang, G. S.; O, E. J. Effect of surfactant on the properties of tantalum capacitor using soluble polyaniline electrolyte. Korean Chem. Eng. Res. 2003, 41, 343. http://www.koreascience.or.kr/article/JAKO200310103436338.page
26

Sheridan, E. M.; Breslin, C. B. Enantioselective detection of D- and l-phenylalanine using optically active polyaniline. Electroanalysis 2005, 17, 532–537.

27

Tran, L. D.; Nguyen, D. T.; Nguyen, B. H.; Do, Q. P.; Nguyen, H. L. Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus. Talanta 2011, 85, 1560–1565.

28

Bang, D.; Lee, J.; Park, J.; Choi, J.; Chang, Y. W.; Yoo, K. H.; Huh, Y. M.; Haam, S. Effectively enhanced sensitivity of a polyaniline–carbon nanotube composite thin film bolometric near-infrared sensor. J. Mater. Chem. 2012, 22, 3215–3219.

29

Choi, E. B.; Choi, J.; Bae, S. R.; Kim, H. O.; Jang, E.; Kang, B.; Kim, M. H.; Kim, B.; Suh, J. S.; Lee, K. et al. Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport. Nano Res. 2015, 8, 1169–1179.

30

Shrivastav, A. M.; Usha, S. P.; Gupta, B. D. A localized and propagating spr, and molecular imprinting based fiber-optic ascorbic acid sensor using an in situ polymerized polyaniline–Ag nanocomposite. Nanotechnology 2016, 27, 345501.

31

Takemura, K.; Adegoke, O.; Takahashi, N.; Kato, T.; Li, T. C.; Kitamoto, N.; Tanaka, T.; Suzuki, T.; Park, E. Y. Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses. Biosens. Bioelectron. 2017, 89, 998–1005.

32

Botewad, S. N.; Pahurkar, V. G.; Muley, G. G. Fabrication and evaluation of evanescent wave absorption based polyaniline-cladding modified fiber optic urea biosensor. Opt. Fiber Technol. 2018, 40, 8–12.

33

Ramos, K. C.; Nishiyama, K.; Maeki, M.; Ishida, A.; Tani, H.; Kasama, T.; Baba, Y.; Tokeshi, M. Rapid, sensitive, and selective detection of H5 hemagglutinin from avian influenza virus using an immunowall device. ACS Omega 2019, 4, 16683–16688.

34

Maddali, H.; Miles, C. E.; Kohn, J.; O'Carroll, D. M. Optical biosensors for virus detection: Prospects for SARS-CoV-2/COVID-19. ChemBioChem 2021, 22, 1176–1189.

35

Cho, S.; Lee, J. S.; Joo, H. Recent developments of the solution-processable and highly conductive polyaniline composites for optical and electrochemical applications. Polymers (Basel) 2019, 11, 1965.

36

Su, N. Improving electrical conductivity, thermal stability, and solubility of polyaniline-polypyrrole nanocomposite by doping with anionic spherical polyelectrolyte brushes. Nanoscale Res. Lett. 2015, 10, 301.

37

Khrenova, M. G.; Nemukhin, A. V.; Tsirelson, V. G. Origin of the π-stacking induced shifts in absorption spectral bands of the green fluorescent protein chromophore. Chem. Phys. 2019, 522, 32–38.

38

Song, S.; Ha, K.; Guk, K.; Hwang, S. G.; Choi, J. M.; Kang, T.; Bae, P.; Jung, J.; Lim, E. K. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Adv. 2016, 6, 48566–48570.

39

Salonen, L. M.; Ellermann, M.; Diederich, F. Aromatic rings in chemical and biological recognition: Energetics and structures. Angew. Chem., Int. Ed. 2011, 50, 4808–4842.

40

Wu, S. Q.; Wang, J. W.; Shao, J.; Wei, L.; Yang, K.; Ren, H. Building a novel chemically modified polyaniline/thermally reduced graphene oxide hybrid through π−π interaction for fabricating acrylic resin elastomer-based composites with enhanced dielectric property. ACS Appl. Mater. Interfaces 2017, 9, 28887–28901.

41

Zhang, L.; Zhang, Z. L.; Lv, Y. Y.; Chen, X. Q.; Wu, Z.; He, Y. Y.; Zou, Y. H. Reduced graphene oxide aerogels with uniformly self-assembled polyaniline nanosheets for electromagnetic absorption. ACS Appl. Nano Mater. 2020, 3, 5978–5986.

42

Chevaliez, S.; Poiteau, L.; Rosa, I.; Soulier, A.; Roudot-Thoraval, F.; Laperche, S.; Hézode, C.; Pawlotsky, J. M. Prospective assessment of rapid diagnostic tests for the detection of antibodies to hepatitis C virus, a tool for improving access to care. Clin. Microbiol. Infect. 2016, 22, 459.e1–459.e6.

43

Luo, R.; Fongwen, N.; Kelly-Cirino, C.; Harris, E.; Wilder-Smith, A.; Peeling, R. W. Rapid diagnostic tests for determining dengue serostatus: A systematic review and key informant interviews. Clin. Microbiol. Infect. 2019, 25, 659–666.

44

Navarchian, A. H.; Hasanzadeh, Z.; Joulazadeh, M. Effect of polymerization conditions on reaction yield, conductivity, and ammonia sensing of polyaniline. Adv. Polym. Technol. 2013, 32, 21356.

45

Kim, H. O.; Yeom, M.; Kim, J.; Kukreja, A.; Na, W.; Choi, J.; Kang, A.; Yun, D.; Lim, J. W.; Song, D. et al. Reactive oxygen species-regulating polymersome as an antiviral agent against influenza virus. Small 2017, 13, 1700818.

46

Li, J. F.; Zhang, R. Q. Strong orbital deformation due to CH−π interaction in the benzene-methane complex. Phys. Chem. Chem. Phys. 2015, 17, 29489–29491.

47

Liu, Y. F.; Ding, Y.; Gou, H. L.; Huang, X.; Zhang, G. Y.; Zhang, Q.; Liu, Y. Z.; Meng, Z.; Xi, K.; Jia, X. D. Room temperature synthesis of pH-switchable polyaniline quantum dots as a turn-on fluorescent probe for acidic biotarget labeling. Nanoscale 2018, 10, 6660–6670.

48

Wang, M.; Jang, S. K.; Jang, W. J.; Kim, M.; Park, S. Y.; Kim, S. W.; Kahng, S. J.; Choi, J. Y.; Ruoff, R. S.; Song, Y. J. et al. A platform for large-scale graphene electronics-CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746–2752.

49

Yang, J.; Zhen, X.; Wang, B.; Gao, X. M.; Ren, Z. C.; Wang, J. Q.; Xie, Y. J.; Li, J. R.; Peng, Q.; Pu, K. Y. et al. The influence of the molecular packing on the room temperature phosphorescence of purely organic luminogens. Nat. Commun. 2018, 9, 840.

50

Mati, I. K.; Cockroft, S. L. Molecular balances for quantifying non-covalent interactions. Chem. Soc. Rev. 2010, 39, 4195–4205.

51

Kryuchkov, Y. N. Concentration dependence of the mean interparticle distance in disperse systems. Refract. Ind. Ceram. 2001, 42, 390–392.

52

Gribkova, O. L.; Nekrasov, A. A.; Ivanov, V. F.; Kozarenko, O. A.; Posudievsky, O. Y.; Vannikov, A. V.; Koshechko, V. G.; Pokhodenko, V. D. Mechanochemical synthesis of polyaniline in the presence of polymeric sulfonic acids of different structure. Synth. Metals 2013, 180, 64–72.

53

Fan, G. L.; Yan, D. P. Two-component orderly molecular hybrids of diphenylanthracene: Modulation of solid-state aggregation toward tunable photophysical properties and highly enhanced electrochemiluminescence. Adv. Opt. Mater. 2016, 4, 2139–2147.

54

Chen, T.; Li, M. X.; Liu, J. Q. π–π stacking interaction: A nondestructive and facile means in material engineering for bioapplications. Cryst. Growth Des. 2018, 18, 2765–2783.

55

Stewart, K.; Limbu, S.; Nightingale, J.; Pagano, K.; Park, B.; Hong, S.; Lee, K.; Kwon, S.; Kim, J. S. Molecular understanding of a π-conjugated polymer/solid-state ionic liquid complex as a highly sensitive and selective gas sensor. J. Mater. Chem. C 2020, 8, 15268–15276.

56

Kilic, T.; Weissleder, R.; Lee, H. Molecular and immunological diagnostic tests of covid-19: Current status and challenges. iScience 2020, 23, 101406.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2021
Revised: 22 July 2021
Accepted: 25 July 2021
Published: 21 September 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

H.-O. Kim acknowledges support from the National Research Foundation of Korea grant funded by the Korean government (No. NRF-2019R1I1A1A01057005) and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Animal Disease Management Technology Development Program funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 320056-2). D. Song acknowledges support from Korea Mouse Phenotyping Project (No. NRF-2019M3A9D5A01102797) and Development of African Swine Fever Virus Vaccine and Assessment of Rapid Test Kit (No. NRF-2019K1A3A1A61091813) of the Ministry of Science and ICT through the National Research Foundation. S. Haam acknowledges support from Technology Development Project for Biological Hazards Management in Indoor Air Program of Korea Environment Industry & Technology Institute (KEITI) funded by Korea Ministry of Environment (MOE) (No. RE202101004) and Nano Material Technology Development Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2017M3A7B4041798). This research was also supported by the Bio & Medical Technology Development Program (No. NRF-2018M3A9E2022819) and the Bio & Medical Technology Development Program (No. NRF-2018M3A9H4056340) of the National Research Foundation (NRF) funded by the Ministry of Science & ICT.

Return