Journal Home > Volume 15 , Issue 3

The variation of interlayer coupling can greatly affect the bandstructure of few layered transition metal dichalcogenides (TMDs), for instance, transition of indirect-to-direct bandgap and vice versa, which is correlated with the charge carrier and optical density. However, methods that can modulate the coupling strength in a controllable way are still lacking. Here, we report a fluidic dynamic strategy to tune the interlayer coupling of folded bi-layer MoS2. By controlling the flow direction and particle size of the fluid, mono-layer MoS2 can be folded into bi-layer with a controlled folding direction for designated twist angles as well as tunable interlayer coupling. Compared with normally folded bi-layer MoS2, the photoluminescence (PL) peak of the direct-bandgap transition for folded bi-layer MoS2 by fluid flow is weakened accompanied with the re-appearance of indirect-bandgap transition peak. Besides, the fluid flow creates a clear trajectory on the folded MoS2, exhibiting various degrees of interlayer coupling along it. Field-effect transistors (FETs) were further fabricated on tunably coupled folded-bi-layers, proving that the bandstructure and electrical property is strongly correlated with the degree of interlayer coupling. This fluidic dynamic strategy can be extended to other TMDs on any substrate, and together with its excellent capability in controlled interlayer coupling, it will provide a new way for the development of TMDs optoelectronics.


menu
Abstract
Full text
Outline
About this article

Tuning bandstructure of folded MoS2 through fluid dynamics

Show Author's information Zihan Zhao1,2,§Weifeng Zhang2,§Yan Zhang2He Hao2Shishu Zhang3Lianming Tong3Banghua Peng1( )Nan Liu2( )
School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, China
Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

§Zihan Zhao and Weifeng Zhang contributed equally to this work.

Abstract

The variation of interlayer coupling can greatly affect the bandstructure of few layered transition metal dichalcogenides (TMDs), for instance, transition of indirect-to-direct bandgap and vice versa, which is correlated with the charge carrier and optical density. However, methods that can modulate the coupling strength in a controllable way are still lacking. Here, we report a fluidic dynamic strategy to tune the interlayer coupling of folded bi-layer MoS2. By controlling the flow direction and particle size of the fluid, mono-layer MoS2 can be folded into bi-layer with a controlled folding direction for designated twist angles as well as tunable interlayer coupling. Compared with normally folded bi-layer MoS2, the photoluminescence (PL) peak of the direct-bandgap transition for folded bi-layer MoS2 by fluid flow is weakened accompanied with the re-appearance of indirect-bandgap transition peak. Besides, the fluid flow creates a clear trajectory on the folded MoS2, exhibiting various degrees of interlayer coupling along it. Field-effect transistors (FETs) were further fabricated on tunably coupled folded-bi-layers, proving that the bandstructure and electrical property is strongly correlated with the degree of interlayer coupling. This fluidic dynamic strategy can be extended to other TMDs on any substrate, and together with its excellent capability in controlled interlayer coupling, it will provide a new way for the development of TMDs optoelectronics.

Keywords: molybdenum disulfide, photoluminescence (PL), interlayer coupling, folding, fluidic dynamics, bandstructure

References(46)

1

Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

2

Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

3

Liang, T.; Xie, S.; Fu, W. F.; Cai, Y.; Shanmugavel, C.; Iwai, H.; Fujita, D.; Hanagata, N.; Chen, H. Z.; Xu, M. S. Synthesis and fast transfer of monolayer MoS2 on reusable fused silica. Nanoscale 2017, 9, 6984–6990.

4

Lee, Y. H.; Yu, L. L.; Wang, H.; Fang, W. J.; Ling, X.; Shi, Y. M.; Lin, C. T.; Huang, J. K.; Chang, M. T.; Chang, C. S. et al. Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 2013, 13, 1852–1857.

5

Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

6

Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

7

Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 Sheet. ACS Nano 2013, 7, 7126–7131.

8

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

9

Heo, H.; Sung, J. H.; Cha, S.; Jang, B. G.; Kim, J. Y.; Jin, G.; Lee, D.; Ahn, J. H.; Lee, M. J.; Shim, J. H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nat. Commun. 2015, 6, 7372.

10

Choi, G. J.; Le, Q. V.; Choi, K. S.; Kwon, K. C.; Jang, H. W.; Gwag, J. S.; Kim, S. Y. Polarized light-emitting diodes based on patterned MoS2 nanosheet hole transport layer. Adv. Mater. 2017, 29, 1702598.

11

Chu, Z. D.; Han, A. L.; Lei, C.; Lopatin, S.; Li, P.; Wannlund, D.; Wu, D.; Herrera, K.; Zhang, X. X.; MacDonald, A. H. et al. Energy-resolved photoconductivity mapping in a monolayer-bilayer WSe2 lateral heterostructure. Nano Lett. 2018, 18, 7200–7206.

12

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

13

Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

14

Tian, Z. Z.; Chen, Q. Q.; Zhong, Q. Honeycomb spherical 1T-MoS2 as efficient counter electrodes for quantum dot sensitized solar cells. Chem. Eng. J. 2020, 396, 125374.

15

Chen, W. J.; Gui, X. C.; Yang, L. L.; Zhu, H.; Tang, Z. K. Wrinkling of two-dimensional materials: Methods, properties and applications. Nanoscale Horiz. 2019, 4, 291–320.

16

Deng, S. K.; Sumant, A. V.; Berry, V. Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 2018, 22, 14–35.

17

Cui, X. P.; Kong, Z. Z.; Gao, E. L.; Huang, D. Z.; Hao, Y.; Shen, H. G.; Di, C. A.; Xu, Z. P.; Zheng, J.; Zhu, D. B. Rolling up transition metal dichalcogenide nanoscrolls via one drop of ethanol. Nat. Commun. 2018, 9, 1301.

18

Deng, S. K.; Che, S. K.; Debbarma, R.; Berry, V. Strain in a single wrinkle on an MoS2 flake for in-plane realignment of band structure for enhanced photo-response. Nanoscale 2019, 11, 504–511.

19

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Band-gap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

20

Xu, W. N.; Li, T. F.; Qin, Z.; Huang, Q.; Gao, H.; Kang, K.; Park, J.; Buehler, M. J.; Khurgin, J. B.; Gracias, D. H. Reversible MoS2 origami with spatially resolved and reconfigurable photosensitivity. Nano Lett. 2019, 19, 7941−7949.

21

Jiang, T.; Liu, H. R.; Huang, D.; Zhang, S.; Li, Y. G.; Gong, X. G.; Shen, Y. R.; Liu, W. T.; Wu, S. W. Valley and band structure engineering of folded MoS2 bilayers. Nat. Nanotechnol. 2014, 9, 825 − 829.

22

Castellanos-Gomez, A.; van der Zant, H. S. J.; Steele, G. A. Folded MoS2 layers with reduced interlayer coupling. Nano Res. 2014, 7, 572−578.

23

Zhao, J.; Deng, Q. M.; Ly, T. H.; Han, G. H.; Sandeep, G.; Rümmeli, M. H. Two-dimensional membrane as elastic shell with proof on the folds revealed by three-dimensional atomic mapping. Nat. Commun. 2015, 6, 8935.

24

Zhu, X. D.; Li, D. H.; Zhang, R. J.; Zhang, H.; Cong, C. X.; Zhu, M. P.; Shi, Y. J.; Wu, Y.; Wang, S. Y.; Zheng, Y. X. et al. Probing quantum confinement effects on the excitonic property and electronic band structures of MoS2. Appl. Surf. Sci. 2020, 519, 146262.

25

Crowne, F. J.; Amani, M.; Birdwell, A. G.; Chin, M. L.; O'Regan, T. P.; Najmaei, S.; Liu, Z.; Ajayan, P. M.; Lou, J.; Dubey, M. Blueshift of the A-exciton peak in folded monolayer 1H-MoS2. Phys. Rev. B 2013, 8, 235302.

26

Liu, Y. D.; Dini, K.; Tan, Q. H.; Liew, T.; Novoselov, K. S.; Gao, W. B. Electrically controllable router of interlayer excitons. Sci. Adv. 2020, 6, eaba1830.

27

Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71−75.

28

Leisgang, N.; Shree, S.; Paradisanos, I.; Sponfeldner, L.; Robert, C.; Lagarde, D.; Balocchi, A.; Watanabe, K.; Taniguchi, T.; Marie, X. et al. Giant stark splitting of an exciton in bilayer MoS2. Nat. Nanotechnol. 2020, 15, 901–907.

29

Rivera, P.; Yu, H. Y.; Seyler, K. L.; Wilson, N. P.; Yao, W.; Xu, X. D. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 2018, 13, 1004–1015.

30

Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

31

Deilmann, T.; Thygesen, K. S. Interlayer excitons with large optical amplitudes in layered van der Waals materials. Nano Lett. 2018, 18, 2984–2989.

32

Onga, M.; Sugita, Y.; Ideue, T.; Nakagawa, Y.; Suzuki, R.; Motome, Y.; Iwasa, Y. Antiferromagnet-semiconductor van der Waals heterostructures: Interlayer interplay of exciton with magnetic ordering. Nano Lett. 2020, 20, 4625–4630.

33

Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

34

Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

35

Dhall, R.; Neupane, M. R.; Wickramaratne, D.; Mecklenburg, M.; Li, Z.; Moore, C.; Lake, R. K.; Cronin, S. Direct bandgap transition in many-layer MoS2 by plasma-induced layer decoupling. Adv. Mater. 2015, 27, 1573–1578.

36

Alexeev, E. M.; Catanzaro, A.; Skrypka, O. V.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I.; Novoselov, K. S.; Shin, H. S. et al. Imaging of interlayer coupling in van der Waals heterostructures using a bright-field optical microscope. Nano Lett. 2017, 17, 5342–5349.

37

Joo, P.; Jo, K.; Ahn, G.; Voiry, D.; Jeong, H. Y.; Ryu, S.; Chhowalla, M.; Kim, B. S. Functional polyelectrolyte nanospaced MoS2 multilayers for enhanced photoluminescence. Nano Lett. 2014, 14, 6456–1025.

38

Zheng, J. Y.; Yan, X. X.; Lu, Z. X.; Qiu, H. L.; Xu, G. C.; Zhou, X.; Wang, P.; Pan, X. Q.; Liu, K. H.; Jiao, L. Y. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv. Mater. 2017, 29, 1604540.

39

Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

40

Wu, F. L.; Liu, Z. T.; Hawthorne, N.; Chandross, M.; Moore, Q.; Argibay, N.; Curry, J. F.; Batteas, J. D. Formation of coherent 1H–1T heterostructures in single-layer MoS2 on Au(111). ACS Nano 2020, 14, 16939–16950.

41

Sanchez, D. A.; Dai, Z. H.; Wang, P.; Cantu-Chavez, A.; Brennan, C. J.; Huang, R.; Lu, N. S. Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. USA 2018, 115, 7884–7889.

42

Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

43

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

44

Xu, K.; Wang, Y.; Zhao, Y. D.; Chai, Y. Modulation doping of transition metal dichalcogenide/oxide heterostructures. J. Mater. Chem. C 2017, 5, 376–381.

45

Kato, E. Brillouin scattering in polymethyl methacrylate from 4 to 300 K: Temperature dependence of the Grüneisen constant and thermal properties. J. Chem. Phys. 1980, 73, 1020–1025.

46

Zhang, W. F.; Zhang, Y.; Qiu, J. K.; Zhao, Z. H.; Liu, N. Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. InfoMat, 2021, 3, 133–154.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 May 2021
Revised: 30 June 2021
Accepted: 27 July 2021
Published: 19 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by National Natural Science Foundation of China (Nos. 21903007 and 22072006), Young Thousand Talents Program (No. 110532103), Beijing Normal University Startup funding (No. 312232102), the Fundamental Research Funds for the Central Universities (No. 310421109), and Double First Class General Science and Technology Projects from School of Chemistry and Chemical Engineering, Shihezi University (No. SHYL-YB201903).

Return