Journal Home > Volume 15 , Issue 3

Carbon nanotubes (CNTs) hold great promise in many fields because of their unique structures and properties. However, the preparation of CNTs generally involves cumbersome equipment and time-consuming processes. Here, we report an ultra-fast carbothermal shock (CTS) approach for synthesizing CNTs with a simple homemade setup by employing Joule heating of a carbon substrate. Carbonized silk fabric (CSF) loaded with transition metal salts in ethanol solution was used as the substrate, which was treated with a pulse voltage of 40 V for only 50 ms and then covered with uniform CNTs grown with bimetallic alloy catalyst nanoparticles (diameter: ~ 9 nm). The temperature ramp rate is as high as 105 K/s. The as-obtained sample has a unique fluffy structure similar to the trichobothrium of spiders, endowing it versatile applications such as airflow sensors or air filters. The CTS technique presents an easy-accessible and highly efficient approach for synthesizing CNTs, which may be also applied in synthesizing other nanomaterials.


menu
Abstract
Full text
Outline
About this article

Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second

Show Author's information Haomin Wang1,§Huimin Wang1,§Shuchen Zhang2Yong Zhang1Kailun Xia1Zhe Yin1Mingchao Zhang1Xiaoping Liang1Haojie Lu1Shuo Li1Jin Zhang2Yingying Zhang1( )
Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

§ Haomin Wang and Huimin Wang contributed equally to this work.

Abstract

Carbon nanotubes (CNTs) hold great promise in many fields because of their unique structures and properties. However, the preparation of CNTs generally involves cumbersome equipment and time-consuming processes. Here, we report an ultra-fast carbothermal shock (CTS) approach for synthesizing CNTs with a simple homemade setup by employing Joule heating of a carbon substrate. Carbonized silk fabric (CSF) loaded with transition metal salts in ethanol solution was used as the substrate, which was treated with a pulse voltage of 40 V for only 50 ms and then covered with uniform CNTs grown with bimetallic alloy catalyst nanoparticles (diameter: ~ 9 nm). The temperature ramp rate is as high as 105 K/s. The as-obtained sample has a unique fluffy structure similar to the trichobothrium of spiders, endowing it versatile applications such as airflow sensors or air filters. The CTS technique presents an easy-accessible and highly efficient approach for synthesizing CNTs, which may be also applied in synthesizing other nanomaterials.

Keywords: carbon nanotube, Joule heating, carbothermal shock, ultra-fast growth, fluffy structure

References(25)

1

Zhang, Y. Y.; Zou, G. F.; Doorn, S. K.; Htoon, H.; Stan, L.; Hawley, M. E.; Sheehan, C. J.; Zhu, Y. T.; Jia, Q. X. Tailoring the morphology of carbon nanotube arrays: From spinnable forests to undulating foams. ACS Nano 2009, 3, 2157–2162.

2

Lima, M. D.; Li, N.; De Andrade, M. J.; Fang, S. L.; Oh, J.; Spinks, G. M.; Kozlov, M. E.; Haines, C. S.; Suh, D.; Foroughi, J. et al. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 2012, 338, 928–932.

3

De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 339, 535–539.

4

Yang, Z. B.; Ren, J.; Zhang, Z. T.; Chen, X. L.; Guan, G. Z.; Qiu, L. B.; Zhang, Y.; Peng, H. S. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223.

5

Wang, H. M.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Xia, K. L.; Yin, Z.; Zhang, M. C.; Liang, X. P.; Zhang, Y. Y. Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Res. 2018, 11, 2347–2356.

6

Deng, J.; Li, J. F.; Chen, P. N.; Fang, X.; Sun, X. M.; Jiang, Y. S.; Weng, W.; Wang, B. J.; Peng, H. S. Tunable photothermal actuators based on a pre-programmed aligned nanostructure. J. Am. Chem. Soc. 2016, 138, 225–230.

7

Wang, H. M.; Yang, Y.; Zhang, M. C.; Wang, Q.; Xia, K. L.; Yin, Z.; Wei, Y.; Ji, Y.; Zhang, Y. Y. Electricity-triggered self-healing of conductive and thermostable vitrimer enabled by paving aligned carbon nanotubes. ACS Appl. Mater. Interfaces 2020, 12, 14315–14322.

8

Kim, S. H.; Haines, C. S.; Li, N.; Kim, K. J.; Mun, T. J.; Choi, C.; Di, J. T.; Oh, Y. J.; Oviedo, J. P.; Bykova, J. et al. Harvesting electrical energy from carbon nanotube yarn twist. Science 2017, 357, 773–778.

9

Wang, H. M.; Li, S.; Wang, Y. L.; Wang, H. M.; Shen, X. Y.; Zhang, M. C.; Lu, H. J.; He, M. S.; Zhang, Y. Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 2020, 32, 1908214.

10

Wang, H. M.; He, M. S.; Zhang, Y. Y. Carbon nanotube films: Preparation and application in flexible electronics. Acta Phys.-Chim. Sin. 2019, 35, 1207–1223.

11

Shi, Z. J.; Lian, Y. F.; Zhou, X. H.; Gu, Z. N.; Zhang, Y. G.; Iijima, S.; Zhou, L. X.; Yue, K. T.; Zhang, S. L. Mass-production of single-wall carbon nanotubes by arc discharge method. Carbon 1999, 37, 1449–1453.

12

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

13

Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett. 1997, 278, 102–106.

14

Zhang, S. C.; Hu, Y.; Wu, J. X.; Liu, D.; Kang, L. X.; Zhao, Q. C.; Zhang, J. Selective scission of C−O and C−C bonds in ethanol using bimetal catalysts for the preferential growth of semiconducting SWNT arrays. J. Am. Chem. Soc. 2015, 137, 1012–1015.

15

Zhang, S. C.; Kang, L. X.; Wang, X.; Tong, L. M.; Yang, L. W.; Wang, Z. Q.; Qi, K.; Deng, S. B.; Li, Q. W.; Bai, X. D. et al. Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts. Nature 2017, 543, 234–238.

16

He, M. S.; Chernov, A. I.; Obraztsova, E. D.; Jiang, H.; Kauppinen, E. I.; Lehtonen, J. Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes. Carbon 2013, 52, 590–594.

17

He, M. S.; Chernov, A. I.; Fedotov, P. V.; Obraztsova, E. D.; Sainio, J.; Rikkinen, E.; Jiang, H.; Zhu, Z.; Tian, Y.; Kauppinen, E. I. et al. Predominant (6,5) single-walled carbon nanotube growth on a copper-promoted iron catalyst. J. Am. Chem. Soc. 2010, 132, 13994–13996.

18

He, M. S.; Liu, B. L.; Chernov, A. I.; Obraztsova, E. D.; Kauppi, I.; Jiang, H.; Anoshkin, I.; Cavalca, F.; Hansen, T. W.; Wagner, J. B. et al. Growth mechanism of single-walled carbon nanotubes on iron-copper catalyst and chirality studies by electron diffraction. Chem. Mater. 2012, 24, 1796–1801.

19

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 2018, 359, 1489–1494.

20

Neuer, G. Spectral and total emissivity measurements of highly emitting materials. Int. J. Thermophys. 1995, 16, 257–265.

21

Yao, Y. G.; Fu, K. K.; Zhu, S. Z.; Dai, J. Q.; Wang, Y. B.; Pastel, G.; Chen, Y. N.; Li, T.; Wang, C. W.; Li, T. et al. Carbon welding by ultrafast Joule heating. Nano Lett. 2016, 16, 7282–7289.

22

Dollimore, D.; Griffiths, D. L.; Nicholson, D. 488. The thermal decomposition of oxalates. Part II. Thermogravimetric analysis of various oxalates in air and in nitrogen. J. Chem. Soc. 1963, 2617–2623.

23

Sinha, A. S. K.; Shankar, V. Characterization and activity of cobalt oxide catalysts for total oxidation of hydrocarbons. Chem. Eng. J. 1993, 52, 115–120.

24

He, M. S.; Zhang, S. C.; Wu, Q. R.; Xue, H.; Xin, B. W.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.

25

Wang, C. Y.; Li, X.; Gao, E. L.; Jian, M. Q.; Xia, K. L.; Wang, Q.; Xu, Z. P.; Ren, T. L.; Zhang, Y. Y. Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv. Mater. 2016, 28, 6640–6648.

Publication history
Copyright
Acknowledgements

Publication history

Received: 31 May 2021
Revised: 16 July 2021
Accepted: 22 July 2021
Published: 12 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Technology R&D Program of China (No. 2020YFA0210702), and the National Natural Science Foundation of China (No. 21975141).

Return