Journal Home > Volume 15 , Issue 6

High-entropy alloy nanoparticles (HEA-NPs) are highly underutilized in heterogeneous catalysis due to the absence of a reliable, sustainable, and facile synthetic method. Herein, we report a facile synthesis of HEA nanocatalysts realized via an ultrasound-driven wet chemistry method promoted by alcoholic ionic liquids (AILs). Owing to the intrinsic reducing ability of the hydroxyl group, AILs were synthesized and utilized as environmentally friendly alternatives to conventional reducing agents and volatile organic solvents in the synthetic process. Under high-intensity ultrasound irradiation, Au3+, Pd2+, Pt2+, Rh3+, and Ru3+ ions were co-reduced and transformed into single-phase HEA (AuPdPtRhRu) nanocrystals without calcination. Characterization results reveal that the as-synthesized nanocrystals are composed of elements of Au, Pd, Pt, Rh, and Ru as expected. Compared to the monometallic counterparts such as Pd-NPs, the carbon-supported HEA nanocatalysts show superior catalytic performance for selective hydrogenation of phenol to cyclohexanone in terms of yield and selectivity. Our synthetic strategy provides an improved and facile methodology for the sustainable synthesis of multicomponent alloys for catalysis and other applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrasound-driven fabrication of high-entropy alloy nanocatalysts promoted by alcoholic ionic liquids

Show Author's information Francis Okejiri1,2Zhenzhen Yang2( )Hao Chen1Chi-Linh Do-Thanh1Tao Wang2Shize Yang3,( )Sheng Dai1,2( )
Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, USA
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
Present address: Eyring Materials Center, Arizona State University, Tempe, AZ 85287, USA

Abstract

High-entropy alloy nanoparticles (HEA-NPs) are highly underutilized in heterogeneous catalysis due to the absence of a reliable, sustainable, and facile synthetic method. Herein, we report a facile synthesis of HEA nanocatalysts realized via an ultrasound-driven wet chemistry method promoted by alcoholic ionic liquids (AILs). Owing to the intrinsic reducing ability of the hydroxyl group, AILs were synthesized and utilized as environmentally friendly alternatives to conventional reducing agents and volatile organic solvents in the synthetic process. Under high-intensity ultrasound irradiation, Au3+, Pd2+, Pt2+, Rh3+, and Ru3+ ions were co-reduced and transformed into single-phase HEA (AuPdPtRhRu) nanocrystals without calcination. Characterization results reveal that the as-synthesized nanocrystals are composed of elements of Au, Pd, Pt, Rh, and Ru as expected. Compared to the monometallic counterparts such as Pd-NPs, the carbon-supported HEA nanocatalysts show superior catalytic performance for selective hydrogenation of phenol to cyclohexanone in terms of yield and selectivity. Our synthetic strategy provides an improved and facile methodology for the sustainable synthesis of multicomponent alloys for catalysis and other applications.

Keywords: nanoparticles, high-entropy alloy, sustainability, hydrogenation, alcoholic ionic liquid, ultrasonication

References(69)

1

Fu, Z. Q.; Jiang, L.; Wardini, J. L.; MacDonald, B. E.; Wen, H. M.; Xiong, W.; Zhang, D. L.; Zhou, Y. Z.; Rupert, T. J.; Chen, W. P. et al. A high-entropy alloy with hierarchical nanoprecipitates and ultrahigh strength. Sci. Adv. 2018, 4, eaat8712.

2

Yao, Y. G.; Liu, Z. Y.; Xie, P. F.; Huang, Z. N.; Li, T. Y.; Morris, D.; Finfrock, Z.; Zhou, J. H.; Jiao, M. L.; Gao, J. L. et al. Computationally aided, entropy-driven synthesis of highly efficient and durable multi-elemental alloy catalysts. Sci. Adv. 2020, 6, eaaz0510.

3

Löffler, T.; Savan, A.; Garzón-Manjón, A.; Meischein, M.; Scheu, C.; Ludwig, A.; Schuhmann, W. Toward a paradigm shift in electrocatalysis using complex solid solution nanoparticles. ACS Energy Lett. 2019, 4, 1206–1214.

4

Xin, Y.; Li, S. H.; Qian, Y. Y.; Zhu, W. K.; Yuan, H. B.; Jiang, P. Y.; Guo, R. H.; Wang, L. B. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal. 2020, 10, 11280–11306.

5

Chen, H.; Jie, K. H.; Jafta, C. J.; Yang, Z. Z.; Yao, S. Y.; Liu, M. M.; Zhang, Z. H.; Liu, J. X.; Chi, M. F.; Fu, J. et al. An ultrastable heterostructured oxide catalyst based on high-entropy materials: A new strategy toward catalyst stabilization via synergistic interfacial interaction. Appl. Catal. B Environ. 2020, 276, 119155.

6

Xu, H. D.; Zhang, Z. H.; Liu, J. X.; Do-Thanh, C. L.; Chen, H.; Xu, S. H.; Lin, Q. J.; Jiao, Y.; Wang, J. L.; Wang, Y. et al. Entropy-stabilized single-atom Pd catalysts via high-entropy fluorite oxide supports. Nat. Commun. 2020, 11, 3908.

7

Shu, Y.; Bao, J. F.; Yang, S. Z.; Duan, X. L.; Zhang, P. F. Entropy-stabilized metal-CeOx solid solutions for catalytic combustion of volatile organic compounds. AlChE J. 2021, 67, e17046.

8

Feng, D. Y.; Dong, Y. B.; Zhang, L. L.; Ge, X.; Zhang, W.; Dai, S.; Qiao, Z. A. Holey lamellar high-entropy oxide as an ultra-high-activity heterogeneous catalyst for solvent-free aerobic oxidation of benzyl alcohol. Angew. Chem. 2020, 132, 19671–19677.

9

Yao, Y. G.; Huang, Z. N.; Xie, P. F.; Lacey, S. D.; Jacob, R. J.; Xie, H.; Chen, F. J.; Nie, A. M.; Pu, T. C.; Rehwoldt, M. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science. 2018, 359, 1489–1494.

10

Chen, Y. F.; Zhan, X.; Bueno, S. L. A.; Shafei, I. H.; Ashberry, H. M.; Chatterjee, K.; Xu, L.; Tang, Y. W.; Skrabalak, S. E. Synthesis of monodisperse high entropy alloy nanocatalysts from core@shell nanoparticles. Nanoscale Horiz. 2021, 6, 231–237.

11

Xie, P. F.; Yao, Y. G.; Huang, Z. N.; Liu, Z. Y.; Zhang, J. L.; Li, T. Y.; Wang, G. F.; Shahbazian-Yassar, R.; Hu, L. B.; Wang, C. Highly efficient decomposition of ammonia using high-entropy alloy catalysts. Nat. Commun. 2019, 10, 4011.

12

Lv, Z. Y.; Liu, X. J.; Jia, B.; Wang, H.; Wu, Y.; Lu, Z. P. Development of a novel high-entropy alloy with eminent efficiency of degrading azo dye solutions. Sci. Rep. 2016, 6, 34213.

13

Wu, S. K.; Pan, Y.; Wang, N.; Lu, T.; Dai, W. J. Azo dye degradation behavior of AlFeMnTiM (M = Cr, Co, Ni) high-entropy alloys. Int. J. Min. Met. Mater. 2019, 26, 124–132.

14

Qiu, H. J.; Fang, G.; Wen, Y. R.; Liu, P.; Xie, G. Q.; Liu, X. J.; Sun, S. H. Nanoporous high-entropy alloys for highly stable and efficient catalysts. J. Mater. Chem. A 2019, 7, 6499–6506.

15

Zhang, G. L.; Ming, K. S.; Kang, J. L.; Huang, Q.; Zhang, Z. J.; Zheng, X. R.; Bi, X. F. High entropy alloy as a highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim. Acta 2018, 279, 19–23.

16

Waag, F.; Li, Y.; Ziefuß, A. R.; Bertin, E.; Kamp, M.; Duppel, V.; Marzun, G.; Kienle, L.; Barcikowski, S.; Gökce, B. Kinetically-controlled laser-synthesis of colloidal high-entropy alloy nanoparticles. RSC Adv. 2019, 9, 18547–18558.

17

Pedersen, J. K.; Batchelor, T. A. A.; Bagger, A.; Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 2020, 10, 2169–2176.

18

Sun, Y. F.; Dai, S. High-entropy materials for catalysis: A new frontier. Sci. Adv. 2021, 7, eabg1600.

19

Dai, S. Across the board: Sheng dai on catalyst design by entropic factors. ChemSusChem 2020, 13, 1915–1917.

20

Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

21

Yang, Y.; Song, B. A.; Ke, X.; Xu, F. Y.; Bozhilov, K. N.; Hu, L. B.; Shahbazian-Yassar, R.; Zachariah, M. R. Aerosol synthesis of high entropy alloy nanoparticles. Langmuir 2020, 36, 1985–1992.

22

Gao, S. J.; Hao, S. Y.; Huang, Z. N.; Yuan, Y. F.; Han, S.; Lei, L. C.; Zhang, X. W.; Shahbazian-Yassar, R.; Lu, J. Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis. Nat. Commun. 2020, 11, 2016.

23

Joo, S. H.; Bae, J. W.; Park, W. Y.; Shimada, Y.; Wada, T.; Kim, H. S.; Takeuchi, A.; Konno, T. J.; Kato, H.; Okulov, I. V. Beating thermal coarsening in nanoporous materials via high-entropy design. Adv. Mater. 2020, 32, 1906160.

24

Okulov, A. V.; Joo, S. H.; Kim, H. S.; Kato, H.; Okulov, I. V. Nanoporous high-entropy alloy by liquid metal dealloying. Metals 2020, 10, 1396.

25

Rekha, M. Y.; Mallik, N.; Srivastava, C. First report on high entropy alloy nanoparticle decorated graphene. Sci. Rep. 2018, 8, 8737.

26

Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Garzón Manjón, A.; Chen, Y. T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 2018, 8, 1802269.

27

Bondesgaard, M.; Broge, N. L. N.; Mamakhel, A.; Bremholm, M.; Iversen, B. B. General solvothermal synthesis method for complete solubility range bimetallic and high-entropy alloy nanocatalysts. Adv. Funct. Mater. 2019, 29, 1905933.

28

Bang, J. H.; Suslick, K. S. Applications of ultrasound to the synthesis of nanostructured materials. Adv. Mater. 2010, 22, 1039–1059.

29

Xu, H. X.; Zeiger, B. W.; Suslick, K. S. Sonochemical synthesis of nanomaterials. Chem. Soc. Rev. 2013, 42, 2555–2567.

30

Okejiri, F.; Zhang, Z. H.; Liu, J. X.; Liu, M. M.; Yang, S. Z.; Dai, S. Room-temperature synthesis of high-entropy perovskite oxide nanoparticle catalysts through ultrasonication-based method. ChemSusChem 2020, 13, 111–115.

31

Liu, M. M.; Zhang, Z. H.; Okejiri, F.; Yang, S. Z.; Zhou, S. H.; Dai, S. Entropy-maximized synthesis of multimetallic nanoparticle catalysts via a ultrasonication-assisted wet chemistry method under ambient conditions. Adv. Mater. Interfaces 2019, 6, 1900015.

32

Kim, K. S.; Choi, S.; Cha, J. H.; Yeon, S. H.; Lee, H. Facile one-pot synthesis of gold nanoparticles using alcohol ionic liquids. J. Mater. Chem. 2006, 16, 1315–1317.

33

Yeon, S. H.; Kim, K. S.; Choi, S.; Lee, H.; Kim, H. S.; Kim, H. Physical and electrochemical properties of 1-(2-hydroxyethyl)-3-methyl imidazolium and N-(2-hydroxyethyl)-N-methyl morpholinium ionic liquids. Electrochim. Acta 2005, 50, 5399–5407.

34

Anderson, J. L.; Clark, K. D. Ionic liquids as tunable materials in (bio)analytical chemistry. Anal. Bioanal. Chem. 2018, 410, 4565–4566.

35

Wu, Q. M.; Hong, X.; Zhu, L. F.; Meng, X. J.; Han, S. C.; Zhang, J.; Liu, X. L.; Jin, C. H.; Xiao, F. S. Generalized ionothermal synthesis of silica-based zeolites. Microporous Mesoporous Mater. 2019, 286, 163–168.

36

Zhang, P. F.; Gong, Y. T.; Lv, Y. Q.; Guo, Y.; Wang, Y.; Wang, C. M.; Li, H. R. Ionic liquids with metal chelate anions. Chem. Commun. 2012, 48, 2334–2336.

37

Lu, H. F.; Zhang, P. F.; Qiao, Z. A.; Zhang, J. S.; Zhu, H. Y.; Chen, J. H.; Chen, Y. F.; Dai, S. Ionic liquid-mediated synthesis of meso-scale porous lanthanum-transition-metal perovskites with high CO oxidation performance. Chem. Commun. 2015, 51, 5910–5913.

38

Fujita, S. i.; Yamada, T.; Akiyama, Y.; Cheng, H. Y.; Zhao, F. Y.; Arai, M. Hydrogenation of phenol with supported rh catalysts in the presence of compressed CO2: Its effects on reaction rate, product selectivity and catalyst life. J. Supercrit. Fluids 2010, 54, 190–201.

39

Xiang, Y. Z.; Ma, L.; Lu, C. S.; Zhang, Q. F.; Li, X. N. Aqueous system for the improved hydrogenation of phenol and its derivatives. Green Chem. 2008, 10, 939–943.

40

Liu, H. Z.; Jiang, T.; Han, B. X.; Liang, S. G.; Zhou, Y. X. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd–lewis acid catalyst. Science 2009, 326, 1250–1252.

41

Mahata, N.; Raghavan, K. V.; Vishwanathan, V.; Park, C.; Keane, M. A. Phenol hydrogenation over palladium supported on magnesia: Relationship between catalyst structure and performance. Phys. Chem. Chem. Phys. 2001, 3, 2712–2719.

42

Chatterjee, M.; Kawanami, H.; Sato, M.; Chatterjee, A.; Yokoyama, T.; Suzuki, T. Hydrogenation of phenol in supercritical carbon dioxide catalyzed by palladium supported on Al-MCM-41: A facile route for one-pot cyclohexanone formation. Adv. Synth. Catal. 2009, 351, 1912–1924.

43

Nelson, N. C.; Manzano, J. S.; Sadow, A. D.; Overbury, S. H.; Slowing, I. I. Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal. 2015, 5, 2051–2061.

44

Mahata, N.; Vishwanathan, V. Influence of palladium precursors on structural properties and phenol hydrogenation characteristics of supported palladium catalysts. J. Catal. 2000, 196, 262–270.

45

Xu, G. Y.; Guo, J. H.; Zhang, Y.; Fu, Y.; Chen, J. Z.; Ma, L. L.; Guo, Q. X. Selective hydrogenation of phenol to cyclohexanone over Pd-HAP catalyst in aqueous media. ChemCatChem 2015, 7, 2485–2492.

46

Zhu, J. F.; Tao, G. H.; Liu, H. Y.; He, L.; Sun, Q. H.; Liu, H. C. Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble pd nanoparticles. Green Chem. 2014, 16, 2664–2669.

47

Liu, S. W.; Han, J.; Wu, Q.; Bian, B.; Li, L.; Yu, S. T.; Song, J.; Zhang, C.; Ragauskas, A. J. Hydrogenation of phenol to cyclohexanone over bifunctional Pd/C-heteropoly acid catalyst in the liquid phase. Catal. Lett. 2019, 149, 2383–2389.

48

Makowski, P.; Demir Cakan, R.; Antonietti, M.; Goettmann, F.; Titirici, M. M. Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon. Chem. Commun. 2008, 999–1001.

49

Chen, H.; Sun, J. S. Selective hydrogenation of phenol for cyclohexanone: A review. J. Ind. Eng. Chem. 2021, 94, 78–91.

50

Srinivas, S. T.; Rao, P. K. Highly selective Pt–Cr/C alloy catalysts for single-step vapour phase hydrogenation of phenol to give cyclohexanone. J. Chem. Soc., Chem. Commun. 1993, 33–34.

51

Shore, S. G.; Ding, E. R; Park, C.; Keane, M. A. Vapor phase hydrogenation of phenol over silica supported Pd and Pd-Yb catalysts. Catal. Commun. 2002, 3, 77–84.

52

Yang, X.; Du, L.; Liao, S. J.; Li, Y. X.; Song, H. Y. High-performance gold-promoted palladium catalyst towards the hydrogenation of phenol with mesoporous hollow spheres as support. Catal. Commun. 2012, 17, 29–33.

53

Lin, H. H.; Muzzio, M.; Wei, K. C.; Zhang, P.; Li, J. R.; Li, N.; Yin, Z. Y.; Su, D.; Sun, S. H. Pdau alloy nanoparticles for ethanol oxidation in alkaline conditions: Enhanced activity and C1 pathway selectivity. ACS Appl. Energy Mater. 2019, 2, 8701–8706.

54

Muzzio, M.; Yu, C.; Lin, H. H.; Yom, T.; Boga, D. A.; Xi, Z.; Li, N.; Yin, Z. Y.; Li, J. R.; Dunn, J. A. et al. Reductive amination of ethyl levulinate to pyrrolidones over AuPd nanoparticles at ambient hydrogen pressure. Green Chem. 2019, 21, 1895–1899.

55

Wang, L. X.; He, S. X.; Wang, L.; Lei, Y.; Meng, X. J.; Xiao, F. S. Cobalt–nickel catalysts for selective hydrogenation of carbon dioxide into ethanol. ACS Catal. 2019, 9, 11335–11340.

56

Zhong, J. W.; Chen, J. Z.; Chen, L. M. Selective hydrogenation of phenol and related derivatives. Catal. Sci. Technol. 2014, 4, 3555–3569.

57

Scirè, S.; Minicò, S.; Crisafulli, C. Selective hydrogenation of phenol to cyclohexanone over supported Pd and Pd-Ca catalysts: An investigation on the influence of different supports and Pd precursors. Appl. Catal. A Gen. 2002, 235, 21–31.

58

Kong, X. Q.; Gong, Y. T.; Mao, S. J.; Wang, Y. Selective hydrogenation of phenol. ChemNanoMat 2018, 4, 432–450.

59

Talukdar, A. K.; Bhattacharyya, K. G.; Sivasanker, S. Hydrogenation of phenol over supported platinum and palladium catalysts. Appl. Catal. A Gen. 1993, 96, 229–239.

60

Yang, X.; Yu, X.; Long, L. Z.; Wang, T. J.; Ma, L. L.; Wu, L. P.; Bai, Y.; Li, X. J.; Liao, S. J. Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: The confinement effect of TNT. Chem. Commun. 2014, 50, 2794.

61

Srinivas, S. T.; Kanta Rao, P. Synthesis, characterization and activity studies of carbon supported platinum alloy catalysts. J. Catal. 1998, 179, 1–17.

62

Giraldo, L.; Bastidas-Barranco, M.; Moreno-Piraján, J. C. Vapour phase hydrogenation of phenol over rhodium on SBA-15 and SBA-16. Molecules 2014, 19, 20594–20612.

63

Martinez-Espinar, F.; Blondeau, P.; Nolis, P.; Chaudret, B.; Claver, C.; Castillón, S.; Godard, C. NHC-stabilised RH nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. J. Catal. 2017, 354, 113–127.

64

Rode, C. V.; Joshi, U. D.; Sato, O.; Shirai, M. Catalytic ring hydrogenation of phenol under supercritical carbon dioxide. Chem. Commun. 2003, 1960–1961.

65

Raut, A. N.; Nandanwar, S. U.; Suryawanshi, Y. R.; Chakraborty, M.; Jauhari, S.; Mukhopadhyay, S.; Shenoy, K. T.; Bajaj, H. C. Liquid phase selective hydrogenation of phenol to cyclohexanone over Ru/Al2O3 nanocatalyst under mild conditions. Kinet. Catal. 2016, 57, 39–46.

66

Vinokurov, V.; Glotov, A.; Chudakov, Y.; Stavitskaya, A.; Ivanov, E.; Gushchin, P.; Zolotukhina, A.; Maximov, A.; Karakhanov, E.; Lvov, Y. Core/shell ruthenium–halloysite nanocatalysts for hydrogenation of phenol. Ind. Eng. Chem. Res. 2017, 56, 14043–14052.

67

Raspolli Galletti, A. M.; Antonetti, C.; Giaiacopi, S.; Piccolo, O.; Venezia, A. M. Innovative process for the synthesis of nanostructured ruthenium catalysts and their catalytic performance. Top. Catal. 2009, 52, 1065–1069.

68

Raspolli Galletti, A. M.; Antonetti, C.; Longo, I.; Capannelli, G.; Venezia, A. M. A novel microwave assisted process for the synthesis of nanostructured ruthenium catalysts active in the hydrogenation of phenol to cyclohexanone. Appl. Catal. A Gen. 2008, 350, 46–52.

69

Zhang, H. W.; Han, A. J.; Okumura, K.; Zhong, L. X.; Li, S. Z.; Jaenicke, S.; Chuah, G. K. Selective hydrogenation of phenol to cyclohexanone by SiO2-supported rhodium nanoparticles under mild conditions. J. Catal. 2018, 364, 354–365.

File
12274_2021_3760_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 May 2021
Revised: 23 June 2021
Accepted: 20 July 2021
Published: 12 August 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, US Department of Energy. We also thank the Science Alliance for the Graduate Advancement, Training, and Education (GATE) scholarship award. We are truly grateful to Avery Blockmon for his contributions.

Return