Journal Home > Volume 15 , Issue 3

Molybdenum phosphide is a potential hydrogen evolution reaction (HER) catalyst. However, traditional high-temperature phosphating preparation methods are prone to damage of material morphology and agglomeration. Using the carbon skeleton to limit the size and morphology of MoP and to improve the conductivity of the material is an effective method to improve the performance of the catalyst. However, there is a lack of research on the effect of carbon skeleton and MoP composite structure on the catalytic mechanism of HER. We coated ZIF-8 on the surface of MoP nanorods, and obtained open N-doped carbon-coated porous MoP nanorods (N/C/MoP) through carbonization and phosphating. Studies have shown that the ZIF-8 coating effectively limits the size and morphology of the material and avoids agglomeration. Under alkaline conditions, N/C/MoP has a low overpotential of 169 mV for HER at 10 mA/cm2, which is 55 mV lower than MoP without a carbon layer. At the same time, its Tafel slope (51.3 mV/dec) is smaller than Pt/C (59.9 mV/dec), and it has good stability. Density functional theory (DFT) studies have shown that under alkaline conditions, there is a synergistic effect between the open N-doped carbon layer and the exposed MoP active surface, which reduces the activation energy of water and improves the catalytic performance of HER. It is worth noting that a tight coating will hinder the exposure of active sites and reduce catalytic activity.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 June 2021
Revised: 19 July 2021
Accepted: 19 July 2021
Published: 13 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21871005), the Program for Innovative Research Team of Anhui Education Committee, the Project for Collaborative Innovation of Anhui Higher Education Institutes (GXXT-2020-005).

Return