AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction

Chao Wang1Wen Li1Xiaodan Wang1Nan Yu1Hongxia Sun1Baoyou Geng1,2( )
College of Chemistry and Materials Science, The key Laboratory of Functional Molecular Solids, Ministry of Education, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu 241002, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, China
Show Author Information

Graphical Abstract

Abstract

Molybdenum phosphide is a potential hydrogen evolution reaction (HER) catalyst. However, traditional high-temperature phosphating preparation methods are prone to damage of material morphology and agglomeration. Using the carbon skeleton to limit the size and morphology of MoP and to improve the conductivity of the material is an effective method to improve the performance of the catalyst. However, there is a lack of research on the effect of carbon skeleton and MoP composite structure on the catalytic mechanism of HER. We coated ZIF-8 on the surface of MoP nanorods, and obtained open N-doped carbon-coated porous MoP nanorods (N/C/MoP) through carbonization and phosphating. Studies have shown that the ZIF-8 coating effectively limits the size and morphology of the material and avoids agglomeration. Under alkaline conditions, N/C/MoP has a low overpotential of 169 mV for HER at 10 mA/cm2, which is 55 mV lower than MoP without a carbon layer. At the same time, its Tafel slope (51.3 mV/dec) is smaller than Pt/C (59.9 mV/dec), and it has good stability. Density functional theory (DFT) studies have shown that under alkaline conditions, there is a synergistic effect between the open N-doped carbon layer and the exposed MoP active surface, which reduces the activation energy of water and improves the catalytic performance of HER. It is worth noting that a tight coating will hinder the exposure of active sites and reduce catalytic activity.

References

1

Xie, J. F.; Qi, J. D.; Lei, F. C.; Xie, Y. Modulation of electronic structures in two-dimensional electrocatalysts for the hydrogen evolution reaction. Chem. Commun. 2020, 56, 11910–11930.

2

Zhang, L. C.; Zhao, H. T.; Xu, S. R.; Liu, Q.; Li, T. S.; Luo, Y. L.; Gao, S. Y.; Shi, X. F.; Asiri, A. M.; Sun, X. P. Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting. Small Struct. 2021, 2, 2000048.

3

Hussain, N.; Wu, F. F.; Xu, L. Q.; Qian, Y. T. Co0.85Se hollow spheres constructed of ultrathin 2D mesoporous nanosheets as a novel bifunctional-electrode for supercapacitor and water splitting. Nano Res. 2019, 12, 2941–2946.

4

Liu, T. Y.; Diao, P. Nickel foam supported Cr-doped NiCo2O4/FeOOH nanoneedle arrays as a high-performance bifunctional electrocatalyst for overall water splitting. Nano Res. 2020, 13, 3299–3309.

5

Wu, A. P.; Gu, Y.; Xie, Y.; Yan, H. J.; Jiao, Y. Q.; Wang, D. X.; Tian, C. G. Interfacial engineering of MoS2/MoN heterostructures as efficient electrocatalyst for pH-universal hydrogen evolution reaction. J. Alloys Compd. 2021, 867, 159066.

6

Zhang, Y.; Liu, Y. W.; Ma, M.; Ren, X.; Liu, Z. A.; Du, G.; Asiri, A. M.; Sun, X. P. A Mn-doped Ni2P nanosheet array: An efficient and durable hydrogen evolution reaction electrocatalyst in alkaline media. Chem. Commun. 2017, 53, 11048–11051.

7

Zhang, Y. L.; Yang, J. F.; Yu, Z. B.; Hou, Y. P.; Jiang, R. H.; Huang, J.; Yang, F.; Yao, S. Q.; Gao, L. H.; Tang, W. J. Modulating carbon-supported transition metal oxide by electron-giving and electron-absorbing functional groups towards efficient overall water splitting. Chem. Eng. J. 2021, 416, 129124.

8

Zhu, Y. L.; Lin, Q.; Zhong, Y. J.; Tahini, H. A.; Shao, Z. P.; Wang, H. T. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392.

9

Weng, C. C.; Ren, J. T.; Yuan, Z. Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: A critical review. ChemSusChem 2020, 13, 3357–3375.

10

Eladgham, E. H.; Rodene, D. D.; Sarkar, R.; Arachchige, I. U.; Gupta, R. B. Electrocatalytic activity of bimetallic Ni-Mo-P nanocrystals for hydrogen evolution reaction. ACS Appl. Nano Mater. 2020, 3, 8199–8207.

11

Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater 2017, 7, 1700020.

12

Jiang, R.; He, C. T.; Guo, C.; Chen, W. X.; Luo, J.; Chen, Y. G.; Wang, L. Y. Edge-contact geometry and anion-deficit construction for activating ultrathin MoS2 on W17O47 in the hydrogen evolution reaction. Inorg. Chem. 2019, 58, 11241–11247.

13

Guo, Y. F.; Fu, X. L.; Zhang, B.; Peng, Z. J. Vertically standing MoP nanosheet arrays on Mo substrate: An integrated binder-free electrode for highly efficient and stable hydrogen evolution. J. Alloys Compd. 2019, 792, 732–741.

14

Zhang, X.; Yu, X. L.; Zhang, L. J.; Zhou, F.; Liang, Y. Y.; Wang, R. H. Molybdenum phosphide/carbon nanotube hybrids as pH-universal electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 2018, 28, 1706523.

15

Zhang, Y. F.; Yang, J.; Dong, Q. C.; Geng, H. B.; Zheng, Y.; Liu, Y. L.; Wang, W. J.; Li, C. C.; Dong, X. C. Highly dispersive MoP nanoparticles anchored on reduced graphene oxide nanosheets for an efficient hydrogen evolution reaction electrocatalyst. ACS Appl. Mater. Interfaces 2018, 10, 26258–26263.

16

Nguyen, C. D.; Nguyen, V. H.; Vu, T. Y.; Pham, L. M. T.; Vu-Huynh, K. L. Efficient and stable hybrid electrocatalyst of mixed MnP-MoP nanoparticles-N,P-codoped graphene for hydrogen evolution reaction. Colloid Surf. A: Physicochem. Eng. Aspects 2020, 593, 124609.

17

Lei, Y.; Jia, M. M.; Guo, P. W.; Liu, J.; Zhai, J. Y. MoP nanoparticles encapsulated in P-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction. Catal. Commun. 2020, 140, 106000.

18

Li, J. S.; Sha, J. Q.; Du, B.; Tang, B. Highly efficient hydrogen evolution electrocatalysts based on coupled molybdenum phosphide and reduced graphene oxide derived from MOFs. Chem. Commun. 2017, 53, 12576–12579.

19

Hu, G. F.; Shang, L.; Sheng, T.; Chen, Y. G.; Wang, L. Y. PtCo@NCs with short heteroatom active site distance for enhanced catalytic properties. Adv. Funct. Mater. 2020, 30, 2002281.

20
Hussain, N.; Zeng, S. Y.; Feng, Z. Y.; Zhai, Y. J.; Wang, C. S.; Zhao, M. W.; Qian, Y. T.; Xu, L. Q. Construction and electrochemical mechanism investigation of hierarchical core-shell like composite as high performance anode for potassium ion batteries. Nano Res., in press, DOI: 10.1007/s12274-021-3657-8.
21

Zhang, Y. X.; Sun, L.; Bai, L. Q.; Si, H. C.; Zhang, Y.; Zhang, Y. H. N-doped-carbon coated Ni2P-Ni sheets anchored on graphene with superior energy storage behavior. Nano Res. 2019, 12, 607–618.

22

Li, J. S.; Zhang, S.; Sha, J. Q.; Wang, H.; Liu, M. Z.; Kong, L. X.; Liu, G. D. Confined molybdenum phosphide in P-doped porous carbon as efficient electrocatalysts for hydrogen evolution. ACS Appl. Mater. Interfaces 2018, 10, 17140–17146.

23

Jiao, Y. Q.; Yan, H. J.; Wang, R. H.; Wang, X. W.; Zhang, X. M.; Wu, A. P.; Tian, C. G.; Jiang, B. J.; Fu, H. G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst. ACS Appl. Mater. Interfaces 2020, 12, 49596–49606.

24

Ge, R. Y.; Huo, J. J.; Liao, T.; Liu, Y.; Zhu, M. Y.; Li, Y.; Zhang, J. J.; Li, W. X. Hierarchical molybdenum phosphide coupled with carbon as a whole pH-range electrocatalyst for hydrogen evolution reaction. Appl. Catal. B: Environ. 2020, 260, 118196.

25

Wang, D. Z.; Shen, Y. L.; Zhang, X. Y.; Wu, Z. Z. Enhanced hydrogen evolution from the MoP/C hybrid by the modification of Ketjen Black. J. Mater. Sci. 2017, 52, 3337–3343.

26

Wang, M. Q.; Ye, C.; Xu, M. W.; Bao, S. J. MoP nanoparticles with a P-rich outermost atomic layer embedded in N-doped porous carbon nanofibers: Self-supported electrodes for efficient hydrogen generation. Nano Res. 2018, 11, 4728–4734.

27

Pi, C. R.; Huang, C.; Yang, Y. X.; Song, H.; Zhang, X. M.; Zheng, Y.; Gao, B.; Fu, J. J.; Chu, P. K.; Huo, K. F. In situ formation of N-doped carbon-coated porous MoP nanowires: A highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range. Appl. Catal. B: Environ. 2020, 263, 118358.

28

Zhang, J. T.; Sui, R.; Xue, Y. R.; Wang, X. D.; Pei, J. J.; Liang, X.; Zhuang, Z. B. Direct synthesis of parallel doped N-MoP/N-CNT as highly active hydrogen evolution reaction catalyst. Sci. China Mater. 2019, 62, 690–698.

29

Li, F.; Bu, Y. F.; Lv, Z. J.; Mahmood, J.; Han, G. F.; Ahmad, I.; Kim, G.; Zhong, Q.; Baek, J. B. Porous cobalt phosphide polyhedrons with iron doping as an efficient bifunctional electrocatalyst. Small 2017, 13, 1701167.

30

Wang, M.; Zhao, R. P.; Li, X. Y.; Zhao, X. S.; Jiang, L. H. Three-dimensional assembly of iron phosphide nanosheets: Synthesis and enhanced catalytic activity for hydrogen evolution reaction. ChemNanoMat 2019, 5, 593–598.

31

Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

32

Zhang, J. T.; Jiang, J. W.; Zhao, X. S. Synthesis and capacitive properties of manganese oxide nanosheets dispersed on functionalized graphene sheets. J. Phys. Chem. C 2011, 115, 6448–6454.

33

Anjum, M. A. R.; Lee, J. S. Sulfur and nitrogen dual-doped molybdenum phosphide nanocrystallites as an active and stable hydrogen evolution reaction electrocatalyst in acidic and alkaline media. ACS Catal 2017, 7, 3030–3038.

34

Wang, C.; Wang, X. D.; Lai, F. Y.; Liu, Z.; Dong, R. H.; Li, W.; Sun, H. X.; Geng, B. Y. Pt nanoparticles supported on N-doped porous carbon derived from metal-organic frameworks for oxygen reduction. ACS Appl. Nano Mater. 2020, 3, 5698–5705.

35
Ye, C. L.; Peng, M.; Cui, T. T.; Tang, X. X.; Wang, D. S.; Jiao, M. L.; Miller, J. T.; Li, Y. D. Revealing the surface atomic arrangement of noble metal alkane dehydrogenation catalysts by a stepwise reduction-oxidation approach. Nano Res., in press, DOI: 10.1007/s12274-021-3636-0.
36

Yin, J.; Jin, J.; Zhang, H.; Lu, M.; Peng, Y.; Huang, B. L.; Xi, P. X.; Yan, C. H. Atomic arrangement in metal-doped NiS2 boosts the hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2019, 58, 18676–18682.

37

Lu, B. Z.; Guo, L.; Wu, F.; Peng, Y.; Lu, J. E.; Smart, T. J.; Wang, N.; Finfrock, Y. Z.; Morris, D.; Zhang, P. et al. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat. Commun. 2019, 10, 631.

Nano Research
Pages 1824-1830
Cite this article:
Wang C, Li W, Wang X, et al. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Research, 2022, 15(3): 1824-1830. https://doi.org/10.1007/s12274-021-3759-3
Topics:

793

Views

43

Crossref

43

Web of Science

42

Scopus

0

CSCD

Altmetrics

Received: 30 June 2021
Revised: 19 July 2021
Accepted: 19 July 2021
Published: 13 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return