Journal Home > Volume 14 , Issue 11

The two-dimensional quantum dots (2D-QDs) have been developed significantly in the past decades. The 2D-QDs could be used in bioimaging, biosensing, drug/gene delivery, and photodynamic/photothermal therapy. The potential applications in biology receive increasing attention, which makes them the novel and emerging candidates in biomaterial research fields. In this context, we discuss a variety of 2D-QDs with different physical and chemical properties. We focuse on the latest synthesis progress and recent applications in biotechnological, and biomedical applications of the 2D-QDs and we also evaluate the challenges and prospects in this field.


menu
Abstract
Full text
Outline
About this article

Two-dimensional quantum dots for biological applications

Show Author's information Yingchun Niu1Jiapeng Li1Jiajia Gao1Xiangcheng Ouyang1Lulu Cai2( )Quan Xu1( )
State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum-Beijing, Beijing 102249, China
Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China

Abstract

The two-dimensional quantum dots (2D-QDs) have been developed significantly in the past decades. The 2D-QDs could be used in bioimaging, biosensing, drug/gene delivery, and photodynamic/photothermal therapy. The potential applications in biology receive increasing attention, which makes them the novel and emerging candidates in biomaterial research fields. In this context, we discuss a variety of 2D-QDs with different physical and chemical properties. We focuse on the latest synthesis progress and recent applications in biotechnological, and biomedical applications of the 2D-QDs and we also evaluate the challenges and prospects in this field.

Keywords: biomedical applications, quantum dots, two-dimensional, biotechnological

References(231)

1

Service, R. F. Nanotechnology grows up. Science 2004, 304, 1732–1734.

2

Xu, Q.; Ding, L.; Wen, Y. Y.; Yang, W. J.; Zhou, H. J.; Chen, X. Z.; Street, J.; Zhou, A. G.; Ong, W. J.; Li, N. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J. Mater. Chem. C 2018, 6, 6360–6369.

3

Liu, H.; Zhang, X.; Zhu, Y. F.; Cao, B.; Zhu, Q. Z.; Zhang, P.; Xu, B.; Wu, F.; Chen, R. J. Electrostatic self-assembly of 0D–2D SnO2 quantum dots/Ti3C2Tx MXene hybrids as anode for lithium-ion batteries. Nano-Micro Lett. 2019, 11, 65.

4

Underwood, S. M.; Posey, L. A.; Herrington, D. G.; Carmel, J. H.; Cooper, M. M. Adapting assessment tasks to support three-dimensional learning. J. Chem. Educ. 2018, 95, 207–217.

5

Chaudhuri, K.; Alhabeb, M.; Wang, Z. X.; Shalaev, V. M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 2018, 5, 1115–1122.

6
Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. et al. The Raman fingerprint of graphene. arXiv preprint: cond-mat/0606284 2006.
7

Huang, X.; Qi, X. Y.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

8

Schwierz, F. Graphene transistors. Nat. Nanotech. 2010, 5, 487–496.

9

Mangayil, R.; Rajala, S.; Pammo, A.; Sarlin, E.; Luo, J.; Santala, V.; Karp, M.; Tuukkanen, S. Engineering and characterization of bacterial nanocellulose films as low cost and flexible sensor material. ACS Appl. Mater. Interfaces 2017, 9, 19048–19056.

10

Strauss, V.; Margraf, J. T.; Dolle, C.; Butz, B.; Nacken, T. J.; Walter, J.; Bauer, W.; Peukert, W.; Spiecker, E.; Clark, T. et al. Carbon nanodots: Toward a comprehensive understanding of their photoluminescence. J. Am. Chem. Soc. 2014, 136, 17308–17316.

11

Song, H. Q.; Liu, X. J.; Wang, B. Y.; Tang, Z. Y.; Lu, S. Y. High production-yield solid-state carbon dots with tunable photoluminescence for white/multi-color light-emitting diodes. Sci. Bull. 2019, 64, 1788–1794.

12

Song, H. Q.; Li, Y. H.; Shang, L.; Tang, Z. Y.; Zhang, T. R.; Lu, S. Y. Designed controllable nitrogen-doped carbon-dots-loaded MoP nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy 2020, 72, 104730.

13

Xu, Q.; Su, R. G.; Chen, Y. S.; Sreenivasan, S. T.; Li, N.; Zheng, X. S.; Zhu, J. F.; Pan, H. B.; Li, W. J.; Xu, C. M. et al. Metal charge transfer doped carbon dots with reversibly switchable, ultra-high quantum yield photoluminescence. ACS Appl. Nano Mater. 2018, 1, 1886–1893.

14

Liu, Y.; Zhang, M. R.; Wu, Y. F.; Zhang, R.; Cao, Y.; Xu, X. Q.; Chen, X.; Cai, L. L.; Xu, Q. Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chem. Commun. 2019, 55, 12164–12167.

15

Zhang, M. R.; Su, R. G.; Zhong, J.; Fei, L.; Cai, W.; Guan, Q. W.; Li, W. J.; Li, N.; Chen, Y. S.; Cai, L. L. et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res. 2019, 12, 815–821.

16

Chakraborty, I.; Bodurtha, K. J.; Heeder, N. J.; Godfrin, M. P.; Tripathi, A.; Hurt, R. H.; Shukla, A.; Bose, A. Massive electrical conductivity enhancement of multilayer graphene/polystyrene composites using a nonconductive filler. ACS Appl. Mater. Interfaces 2014, 6, 16472–16475.

17

Hu, H. W.; Zavabeti, A.; Quan, H. Y.; Zhu, W. Q.; Wei, H. Y.; Chen, D. C.; Ou, J. Z. Recent advances in two-dimensional transition metal dichalcogenides for biological sensing. Biosens. Bioelectron. 2019, 142, 111573.

18

Huang, K.; Xu, K. L.; Zhu, W.; Yang, L.; Hou, X. D.; Zheng, C. B. Hydride generation for headspace solid-phase extraction with CdTe quantum dots immobilized on paper for sensitive visual detection of selenium. Anal. Chem. 2016, 88, 789–795.

19

Zhang, H.; He, H.; Jiang, X. M.; Xia, Z. N.; Wei, W. L. Preparation and characterization of chiral transition-metal dichalcogenide quantum dots and their enantioselective catalysis. ACS Appl. Mater. Interfaces 2018, 10, 30680–30688.

20

Zhang, C.; Hu, D. F.; Xu, J. W.; Ma, M. Q.; Xing, H. B.; Yao, K.; Ji, J.; Xu, Z. K. Polyphenol-assisted exfoliation of transition metal dichalcogenides into nanosheets as photothermal nanocarriers for enhanced antibiofilm activity. ACS Nano 2018, 12, 12347–12356.

21

Lee, H. U.; Park, S. Y.; Lee, S. C.; Choi, S.; Seo, S.; Kim, H.; Won, J.; Choi, K.; Kang, K. S.; Park, H. G. et al. Black phosphorus (BP) nanodots for potential biomedical applications. Small 2016, 12, 214–219.

22

Chen, W. S.; Ouyang, J.; Yi, X. Y.; Xu, Y.; Niu, C. C.; Zhang, W. Y.; Wang, L. Q.; Sheng, J. P.; Deng, L.; Liu, Y. N. et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv. Mater. 2018, 30, 1703458.

23

Cai, L. L.; He, L.; Wang, Y.; Zhong, J.; Zhao, C. J.; Zeng, S.; Yu, J. Y.; Bian, Y.; Wei, Y. Q.; Cai, W. et al. Efficient cocktail chemotherapy by co-delivery of a hydrogen sulfide-releasing aspirin prodrug and paclitaxel via single nanoparticles. RSC Adv. 2017, 7, 13458–13466.

24

Guan, Q. W.; Ma, J. F.; Yang, W. J.; Zhang, R.; Zhang, X. J.; Dong, X. X.; Fan, Y. T.; Cai, L. L.; Cao, Y.; Zhang, Y. L. et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 2019, 11, 14123–14133.

25

Wu, L. X.; Lu, X. B.; Dhanjai, Wu, Z. S.; Dong, Y. F.; Wang, X. H.; Zheng, S. H.; Chen, J. P. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol. Biosens. Bioelectron. 2018, 107, 69–75.

26

Kumar, S.; Lei, Y. J.; Alshareef, N. H.; Quevedo-Lopez, M. A.; Salama, K. N. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker. Biosens. Bioelectron. 2018, 121, 243–249.

27

Sun, H. J.; Ren, J. S.; Qu, X. G. Carbon nanomaterials and DNA: From molecular recognition to applications. Acc. Chem. Res. 2016, 49, 461–470.

28

Li, G. L.; Fu, H. L.; Chen, X. J.; Gong, P. W.; Chen, G.; Xia, L.; Wang, H.; You, J. M.; Wu, Y. N. Facile and sensitive fluorescence sensing of alkaline phosphatase activity with photoluminescent carbon dots based on inner filter effect. Anal. Chem. 2016, 88, 2720–2726.

29

Ding, H.; Du, F. Y.; Liu, P. C.; Chen, Z. J.; Shen, J. C. DNA–carbon dots function as fluorescent vehicles for drug delivery. ACS Appl. Mater. Interfaces 2015, 7, 6889–6897.

30

Guo, T.; Wu, Y.; Lin, Y.; Xu, X.; Lian, H.; Huang, G. M.; Liu, J. Z.; Wu, X. P.; Yang, H. H. Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy. Small 2018, 14, 1702815.

31

Zhao, W. J.; Li, Y. H.; Yang, S.; Chen, Y.; Zheng, J.; Liu, C. H.; Qing, Z. H.; Li, J. S.; Yang, R. H. Target-activated modulation of dual-color and two-photon fluorescence of graphene quantum dots for in vivo imaging of hydrogen peroxide. Anal. Chem. 2016, 88, 4833–4840.

32

Zhu, H. Y.; Zhang, S. Y.; Ling, Y.; Meng, G. L.; Yang, Y.; Zhang, W. pH-responsive hybrid quantum dots for targeting hypoxic tumor siRNA delivery. J. Control. Release 2015, 220, 529–544.

33

Jiang, Y. L.; Wang, Z. Y.; Dai, Z. H. Preparation of silicon–carbon-based dots@dopamine and its application in intracellular Ag+ detection and cell imaging. ACS Appl. Mater. Interfaces 2016, 8, 3644–3650.

34

Zhao, S. J.; Lan, M. H.; Zhu, X. Y.; Xue, H. T.; Ng, T. W.; Meng, X. M.; Lee, C. S.; Wang, P. F.; Zhang, W. J. Green synthesis of bifunctional fluorescent carbon dots from garlic for cellular imaging and free radical scavenging. ACS Appl. Mater. Interfaces 2015, 7, 17054–17060.

35

Zhang, H. X.; Wang, Z. H.; Zhang, Q. X.; Wang, F.; Liu, Y. Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens. Bioelectron. 2019, 124–125, 184–190.

36

Chang, T. H.; Zhang, T. R.; Yang, H. T.; Li, K. R.; Tian, Y.; Lee, J. Y.; Chen, P. Y. Controlled crumpling of two-dimensional titanium carbide (MXene) for highly stretchable, bendable, efficient supercapacitors. ACS Nano 2018, 12, 8048–8059.

37

Su, Y. J.; Lu, X. N.; Xie, M. M.; Geng, H. J.; Wei, H.; Yang, Z.; Zhang, Y. F. A one-pot synthesis of reduced graphene oxide–Cu2S quantum dot hybrids for optoelectronic devices. Nanoscale 2013, 5, 8889–8893.

38

Celli, J. P.; Spring, B. Q.; Rizvi, I.; Evans, C. L.; Samkoe, K. S.; Verma, S.; Pogue, B. W.; Hasan, T. Imaging and photodynamic therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838.

39

Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

40

Wang, Q.; Zhang, C. L.; Shen, G. X.; Liu, H. Y.; Fu, H. L.; Cui, D. X. Fluorescent carbon dots as an efficient siRNA nanocarrier for its interference therapy in gastric cancer cells. J. Nanobiotechnol. 2014, 12, 58.

41

Xue, Q.; Huang, H.; Wang, L.; Chen, Z. W.; Wu, M. H.; Li, Z.; Pan, D. Y. Nearly monodisperse graphene quantum dots fabricated by amine-assisted cutting and ultrafiltration. Nanoscale 2013, 5, 12098–12103.

42

Wang, N.; Zheng, A. Q.; Liu, X.; Chen, J. J.; Yang, T.; Chen, M. L.; Wang, J. H. Deep eutectic solvent-assisted preparation of nitrogen/chloride-doped carbon dots for intracellular biological sensing and live cell imaging. ACS Appl. Mater. Interfaces 2018, 10, 7901–7909.

43

Shangguan, J.; He, D. G.; He, X. X.; Wang, K. M.; Xu, F. Z.; Liu, J. Q.; Tang, J. L.; Yang, X.; Huang, J. Label-free carbon-dots-based ratiometric fluorescence pH nanoprobes for intracellular pH sensing. Anal. Chem. 2016, 88, 7837–7843.

44

Bu, F. X.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Y. Porous MXenes: Synthesis, structures, and applications. Nano Today 2020, 30, 100803.

45

Singh, R. K.; Kumar, R.; Singh, D. P.; Savu, R.; Moshkalev, S. A. Progress in microwave-assisted synthesis of quantum dots (graphene/carbon/semiconducting) for bioapplications: A review. Mater. Today Chem. 2019, 12, 282–314.

46

Szuplewska, A.; Kulpińska, D.; Dybko, A.; Chudy, M.; Jastrzębska, A. M.; Olszyna, A.; Brzózka, Z. Future applications of MXenes in biotechnology, nanomedicine, and sensors. Trends Biotechnol. 2020, 38, 264–279.

47

Hardman, R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 2006, 114, 165–172.

48

Li, H. X.; Yan, X.; Kong, D. S.; Jin, R.; Sun, C. Y.; Du, D.; Lin, Y. H.; Lu, G. Y. Recent advances in carbon dots for bioimaging applications. Nanoscale Horiz. 2020, 5, 218–234.

49

Molaei, M. J. A review on nanostructured carbon quantum dots and their applications in biotechnology, sensors, and chemiluminescence. Talanta 2019, 196, 456–478.

50

Ruan, S.; Qian, J.; Shen, S.; Zhu, J. H.; Jiang, X. G.; He, Q.; Gao, H. L. A simple one-step method to prepare fluorescent carbon dots and their potential application in non-invasive glioma imaging. Nanoscale 2014, 6, 10040–10047.

51

Liu, K.; Liu, X. M.; Zeng, Q. H.; Zhang, Y. L.; Tu, L. P.; Liu, T.; Kong, X. G.; Wang, Y. H.; Cao, F.; Lambrechts, S. A. G. et al. Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 2012, 6, 4054–4062.

52

Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

53

Yang, D.; Yang, G. X.; Sun, Q. Q.; Gai, S. L.; He, F.; Dai, Y. L.; Zhong, C. N.; Yang, P. P. Carbon-dot-decorated TiO2 nanotubes toward photodynamic therapy based on water-splitting mechanism. Adv. Healthc. Mater. 2018, 7, 1800042.

54

Kentish, S. E.; Scholes, C. A.; Stevens, G. W. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Pat. Chem. Eng. 2008, 1, 52–66.

55

Gobi, N.; Vijayakumar, D.; Keles, O.; Erogbogbo, F. Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2017, 2, 4356–4362.

56

Quan, B.; Yu, S. H.; Chung, D. Y.; Jin, A. H.; Park, J. H.; Sung, Y. E.; Piao, Y. Z. Single source precursor-based solvothermal synthesis of heteroatom-doped graphene and its energy storage and conversion applications. Sci. Rep. 2014, 4, 5639.

57

Tetsuka, H.; Asahi, R.; Nagoya, A.; Okamoto, K.; Tajima, I.; Ohta, R.; Okamoto, A. Optically tunable amino-functionalized graphene quantum dots. Adv. Mater. 2012, 24, 5333–5338.

58

Xu, Q.; Xu, H.; Chen, J. R.; Lv, Y. Z.; Dong, C. B.; Sreeprasad, T. S. Graphene and graphene oxide: Advanced membranes for gas separation and water purification. Inorg. Chem. Front. 2015, 2, 417–424.

59

Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

60

Franklin-Mergarejo, R.; Alvarez, D. O.; Tretiak, S.; Fernandez-Alberti, S. Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics. Sci. Rep. 2016, 6, 31253.

61

Han, S. T.; Hu, L.; Wang, X. D.; Zhou, Y.; Zeng, Y. J.; Ruan, S. C.; Pan, C. F.; Peng, Z. C. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 2017, 4, 1600435.

62

Choi, J. R.; Yong, K. W.; Choi, J. Y.; Nilghaz, A.; Lin, Y.; Xu, J.; Lu, X. N. Black phosphorus and its biomedical applications. Theranostics 2018, 8, 1005–1026.

63

Liu, X. Y.; Cao, J.; Feng, B.; Yang, L. L.; Wei, M. B.; Zhai, H. J.; Liu, H. L.; Sui, Y. R.; Yang, J. H.; Liu, Y. H. Facile fabrication and photocatalytic properties of ZnO nanorods/ZnSe nanosheets heterostructure. Superlatt. Microst. 2015, 83, 447–458.

64

Abdelsalam, H.; Saroka, V. A.; Ali, M.; Teleb, N. H.; Elhaes, H.; Ibrahim, M. A. Stability and electronic properties of edge functionalized silicene quantum dots: A first principles study. Phys. E: Low-Dimens. Syst. Nanostruct. 2019, 108, 339–346.

65

Feng, C.; Ouyang, J.; Tang, Z. M.; Kong, N.; Liu, Y.; Fu, L. Y.; Ji, X. Y.; Xie, T.; Farokhzad, O. C.; Tao, W. Germanene-based theranostic materials for surgical adjuvant treatment: inhibiting tumor recurrence and wound infection. Matter 2020, 3, 127–144.

66

Hassan, M.; Gomes, V. G.; Dehghani, A.; Ardekani, S. M. Engineering carbon quantum dots for photomediated theranostics. Nano Res. 2018, 11, 1–41.

67

de Ávila, B. E. F.; Angsantikul, P.; Li, J. X.; Lopez-Ramirez, M. A.; Ramírez-Herrera, D. E.; Thamphiwatana, S.; Chen, C. R.; Delezuk, J.; Samakapiruk, R.; Ramez, V. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 2017, 8, 272.

68

Ding, C. Q.; Zhu, A. W.; Tian, Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc. Chem. Res. 2014, 47, 20–30.

69

Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots. J. Phys.: Condens. Matter 2018, 30, 145301.

70

Li, J. P.; Yang, S. W.; Liu, Z. Y.; Wang, G.; He, P.; Wei, W.; Yang, M. Y.; Deng, Y.; Gu, P.; Xie, X. M. et al. Imaging cellular aerobic glycolysis using carbon dots for early warning of tumorigenesis. Adv. Mater. 2021, 33, 2005096.

71

Sun, Z. B.; Xie, H. H.; Tang, S. Y.; Yu, X. F.; Guo, Z. N.; Shao, J. D.; Zhang, H.; Huang, H.; Wang, H. Y.; Chu, P. K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed. 2015, 54, 11526–11530.

72

Chen, Y.; Wang, L. Z.; Shi, J. L. Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today 2016, 11, 292–308.

73

Sruthy, P. C.; Nagarajan, V.; Chandiramouli, R. Interaction studies of kidney biomarker volatiles on black phosphorene nanoring: A first-principles investigation. J. Mol. Graph. Model. 2020, 97, 107566.

74

Mannix, A. J.; Zhou, X.-F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

75

Feng, B. J.; Sugino, O.; Liu, R. Y.; Zhang, J.; Yukawa, R.; Kawamura, M.; Iimori, T.; Kim, H.; Hasegawa, Y.; Li, H. et al. Dirac fermions in borophene. Phys. Rev. Lett. 2017, 118, 096401.

76

Feng, B. J.; Ding, Z. J.; Meng, S.; Yao, Y. G.; He, X. Y.; Cheng, P.; Chen, L.; Wu, K. H. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Lett. 2012, 12, 3507–3511.

77

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

78

Szafran, B.; Żebrowski, D.; Mreńca-Kolasińska, A. Electrostatic quantum dots in silicene. Sci. Rep. 2018, 8, 7166.

79

Yang, K.; Zhou, G. L.; Xu, Q. The elasticity of MOFs under mechanical pressure. RSC Adv. 2016, 6, 37506–37514.

80

Guo, X. X.; Dai, D. J.; Fan, B. L.; Fan, J. Y. Experimental evidence of α→ β phase transformation in SiC quantum dots and their size-dependent luminescence. Appl. Phys. Lett. 2014, 105, 193110.

81

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

82

Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. Facile and green approach to the synthesis of boron nitride quantum dots for 2,4,6-trinitrophenol sensing. ACS Appl. Mater. Interfaces 2018, 10, 7315–7323.

83

Yeh, Y. T.; Tang, Y.; Lin, Z.; Fujisawa, K.; Lei, Y.; Zhou, Y. J.; Rotella, C.; Elías, A. L.; Zheng, S. Y.; Mao, Y. W. et al. Light-emitting transition metal dichalcogenide monolayers under cellular digestion. Adv. Mater. 2018, 30, 1703321.

84

Botsoa, J.; Lysenko, V.; Géloën, A.; Marty, O.; Bluet, J. M.; Guillot, G. Application of 3C-SiC quantum dots for living cell imaging. Appl. Phys. Lett. 2008, 92, 173902.

85

Krauss, T. F. Slow light in photonic crystal waveguides. J. Phys. D: Appl. Phys. 2007, 40, 2666–2670.

86

Wu, X. L.; Fan, J. Y.; Qiu, T.; Yang, X.; Siu, G. G.; Chu, P. K. Experimental evidence for the quantum confinement effect in 3C-SiC nanocrystallites. Phys. Rev. Lett. 2005, 94, 026102.

87

Yao, W. Y.; Shi, J.; Ling, J.; Guo, Y. D.; Ding, C. S.; Ding, Y. J. SiC-functionalized fluorescent aptasensor for determination of Proteus mirabilis. Microchim. Acta 2020, 187, 406.

88

Liu, Q.; Wang, X. L.; Yang, Q.; Zhang, Z. G.; Fang, X. M. Mesoporous g-C3N4 nanosheets prepared by calcining a novel supramolecular precursor for high-efficiency photocatalytic hydrogen evolution. Appl. Surf. Sci. 2018, 450, 46–56.

89

Cai, X. Y.; Zhang, J. Y.; Fujitsuka, M.; Majima, T. Graphitic-C3N4 hybridized N-doped La2Ti2O7 two-dimensional layered composites as efficient visible-light-driven photocatalyst. Appl. Catal. B: Environ. 2017, 202, 191–198.

90

Chu, X.; Li, K.; Guo, H. Y.; Zheng, H. B.; Shuda, S.; Wang, X. L.; Zhang, J. Y.; Chen, W.; Zhang, Y. Exploration of graphitic-C3N4 quantum dots for microwave-induced photodynamic therapy. ACS Biomater. Sci. Eng. 2017, 3, 1836–1844.

91

Chan, C. F.; Zhou, Y.; Guo, H. Y.; Zhang, J. Y.; Jiang, L. J.; Chen, W.; Shiu, K. K.; Wong, W. K.; Wong, K. L. pH-dependent cancer-directed photodynamic therapy by a water-soluble graphitic-phase carbon nitride-porphyrin nanoprobe. ChemPlusChem 2016, 81, 535–540.

92

Zhang, Y. Y.; Cheng, Y. R.; Yang, F.; Yuan, Z. P.; Wei, W.; Lu, H. T.; Dong, H. F.; Zhang, X. J. Near-infrared triggered Ti3C2/g-C3N4 heterostructure for mitochondria-targeting multimode photodynamic therapy combined photothermal therapy. Nano Today 2020, 34, 100919.

93

Li, H. L.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. T. Controllable synthesis of highly luminescent boron nitride quantum dots. Small 2015, 11, 6491–6499.

94

Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Fabrication and luminescence of monolayered boron nitride quantum dots. Small 2014, 10, 60–65.

95

Azimi, S.; Behin, J.; Abiri, R.; Rajabi, L.; Derakhshan, A. A.; Karimnezhad, H. Synthesis, characterization and antibacterial activity of chlorophyllin functionalized graphene oxide nanostructures. Sci. Adv. Mater. 2014, 6, 771–781.

96

Fei, H. L.; Ye, R. Q.; Ye, G. L.; Gong, Y. J.; Peng, Z. W.; Fan, X. J.; Samuel, E. L. G.; Ajayan, P. M.; Tour, J. M. Boron-and nitrogen-doped graphene quantum dots/graphene hybrid nanoplatelets as efficient electrocatalysts for oxygen reduction. ACS Nano 2014, 8, 10837–10843.

97

Chen, H.; Liu, T. J; Su, Z. Q; Shang, L.; Wei, G. 2D transition metal dichalcogenide nanosheets for photo/thermo-based tumor imaging and therapy. Nanoscale Horiz. 2018, 3, 74–89.

98

Hua, X. W.; Bao, Y. W.; Chen, Z.; Wu, F. G. Carbon quantum dots with intrinsic mitochondrial targeting ability for mitochondria-based theranostics. Nanoscale 2017, 9, 10948–10960.

99

Loo, A. H.; Bonanni, A.; Sofer, Z.; Pumera, M. Transitional metal/chalcogen dependant interactions of hairpin DNA with transition metal dichalcogenides, MX2. ChemPhysChem 2015, 16, 2304–2306.

100

Voiry, D.; Mohite, A.; Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712.

101

Zhang, Y.; Zheng, B.; Zhu, C. F.; Zhang, X.; Tan, C. L.; Li, H.; Chen, B.; Yang, J.; Chen, J. Z.; Huang, Y. et al. Single‐layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 2015, 27, 935–939.

102

Li, B. L.; Wang, J. P.; Zou, H. L.; Garaj, S.; Lim, C. T.; Xie, J. P.; Li, N. B.; Leong, D. T. Low-dimensional transition metal dichalcogenide nanostructures based sensors. Adv. Funct. Mater. 2016, 26, 7034–7056.

103

Jiang, G. H.; Jiang, T. T.; Zhou, H. J.; Yao, J. M.; Kong, X. D. Preparation of N-doped carbon quantum dots for highly sensitive detection of dopamine by an electrochemical method. RSC Adv. 2015, 5, 9064–9068.

104

Xu, Q.; Cai, W.; Li, W. K.; Sreeprasad, T. S.; He, Z. Y.; Ong, W. J.; Li, N. Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Mater. Today Energy 2018, 10, 222–240.

105

Tang, L. B.; Ji, R. B.; Cao, X. K.; Lin, J. Y.; Jiang, H. X.; Li, X. M.; Teng, K. S.; Luk, C. M.; Zeng, S. J.; Hao, J. H. et al. Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 2012, 6, 5102–5110.

106

Xu, Q.; Yang, W. J.; Wen, Y. Y.; Liu, S. K.; Liu, Z.; Ong, W. J.; Li, N. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl. Mater. Today 2019, 16, 90–101.

107

Chen, X. Z.; Kong, Z. Z.; Li, N.; Zhao, X. J.; Sun, C. H. Proposing the prospects of Ti3CN transition metal carbides (MXenes) as anodes of Li-ion batteries: A DFT study. Phys. Chem. Chem. Phys. 2016, 18, 32937–32943.

108

Liu, G. Y.; Zou, J. H.; Tang, Q. Y.; Yang, X. Y.; Zhang, Y. W.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J. J.; Dong, X. C. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086.

109

Lukatskaya, M. R.; Bak, S. M.; Yu, X. Q.; Yang, X. Q.; Barsoum, M. W.; Gogotsi, Y. Probing the mechanism of high capacitance in 2D titanium carbide using in situ X-ray absorption spectroscopy. Adv. Energy Mater. 2015, 5, 1500589.

110

Luo, J. M.; Tao, X. Y.; Zhang, J.; Xia, Y.; Huang, H.; Zhang, L. Y.; Gan, Y. P.; Liang, C.; Zhang, W. K. Sn4+ ion decorated highly conductive Ti3C2 MXene: Promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance. ACS Nano 2016, 10, 2491–2499.

111

Wang, H.; Li, H.; Huang, Y.; Xiong, M. H.; Wang, F.; Li, C. A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes. Biosens. Bioelectron. 2019, 142, 111531.

112

Liu, Y. Y.; Xiao, H.; Goddard III, W. A. Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes. J. Am. Chem. Soc. 2016, 138, 15853–15856.

113

Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684.

114

Fu, X. Y.; Wang, L. L.; Zhao, L. J.; Yuan, Z. Y.; Zhang, Y. P.; Wang, D. Y.; Wang, D. P.; Li, J. Z.; Li, D. D.; Shulga, V. et al. Controlled assembly of MXene nanosheets as an electrode and active layer for high-performance electronic skin. Adv. Funct. Mater. 2021, 31, 2010533.

115

Zhang, J.; Yang, L.; Yuan, Y.; Jiang, J.; Yu, S. H. One-pot gram-scale synthesis of nitrogen and sulfur embedded organic dots with distinctive fluorescence behaviors in free and aggregated states. Chem. Mater. 2016, 28, 4367–4374.

116

Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z.F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430–435.

117

Zhu, H. J.; Lai, Z. C.; Fang, Y.; Zhen, X.; Tan, C. L.; Qi, X. Y.; Ding, D.; Chen, P.; Zhang, H.; Pu, K. Y. Ternary chalcogenide nanosheets with ultrahigh photothermal conversion efficiency for photoacoustic theranostics. Small 2017, 13, 1604139.

118

Liu, Q.; Guo, B. D.; Rao, Z. Y.; Zhang, B. H.; Gong, J. R. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging. Nano Lett. 2013, 13, 2436–2441.

119

Yuan, F. L.; Ding, L.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Zhou, S. X.; Fang, D. C.; Yang, S. H. Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 2015, 7, 11727–11733.

120

Zhang, Q.; Deng, S. N.; Liu, J. L.; Zhong, X. X.; He, J.; Chen, X. F.; Feng, B. W.; Chen, Y. F.; Ostrikov, K. Cancer-targeting graphene quantum dots: Fluorescence quantum yields, stability, and cell selectivity. Adv. Funct. Mater. 2019, 29, 1805860.

121

Zhang, J. L.; Zhao, X. W.; Xian, M.; Dong, C.; Shuang, S. M. Folic acid-conjugated green luminescent carbon dots as a nanoprobe for identifying folate receptor-positive cancer cells. Talanta 2018, 183, 39–47.

122

Yang, P.; Zhu, Z. Q.; Zhang, T.; Zhang, W.; Chen, W. M.; Cao, Y. Z.; Chen, M. Z.; Zhou, X. Y. Orange-emissive carbon quantum dots: Toward application in wound pH monitoring based on colorimetric and fluorescent changing. Small 2019, 15, 1902823.

123

Kim, S.; Choi, Y.; Park, G.; Won, C.; Park, Y. J.; Lee, Y.; Kim, B. S.; Min, D. H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017, 10, 503–519.

124

Wang, L.; Li, B. Q.; Xu, F.; Li, Y.; Xu, Z. H.; Wei, D. Q.; Feng, Y. J.; Wang, Y. M.; Jia, D. C.; Zhou, Y. Visual in vivo degradation of injectable hydrogel by real-time and non-invasive tracking using carbon nanodots as fluorescent indicator. Biomaterials 2017, 145, 192–206.

125

Hua, X. W.; Bao, Y. W.; Zeng, J.; Wu, F. G. Nucleolus-targeted red emissive carbon dots with polarity-sensitive and excitation-independent fluorescence emission: High-resolution cell imaging and in vivo tracking. ACS Appl. Mater. Interfaces 2019, 11, 32647–32658.

126

Wang, J.; Liang, D.; Qu, Z. H.; Kislyakov, I. M.; Kiselev, V. M.; Liu, J. PEGylated-folic acid–modified black phosphorus quantum dots as near-infrared agents for dual-modality imaging-guided selective cancer cell destruction. Nanophotonics 2020, 9, 2425–2435.

127

Ding, X. G.; Peng, F.; Zhou, J.; Gong, W. B.; Slaven, G.; Loh, K. P.; Lim, C. T.; Leong, D. T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41.

128

Ariyasu, S.; Mu, J.; Zhang, X.; Huang, Y.; Yeow, E. K. L.; Zhang, H.; Xing, B. G. Investigation of thermally induced cellular ablation and heat response triggered by planar MoS2-based nanocomposite. Bioconjug. Chem. 2017, 28, 1059–1067.

129

Karunakaran, S.; Pandit, S.; Basu, B.; De, M. Simultaneous exfoliation and functionalization of 2H-MoS2 by thiolated surfactants: Applications in enhanced antibacterial activity. J. Am. Chem. Soc. 2018, 140, 12634–12644.

130

Bao, Y. J.; Li, J. J.; Wang, Y. T.; Yu, L.; Wang, J.; Du, W. J.; Lou, L.; Zhu, Z. Q.; Peng, H.; Zhu, J. Z. Preparation of water soluble CdSe and CdSe/CdS quantum dots and their uses in imaging of cell and blood capillary. Opt. Mater. 2012, 34, 1588–1592.

131

Han, X. X.; Huang, J.; Lin, H.; Wang, Z. G.; Li, P.; Chen, Y. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Adv. Healthc. Mater. 2018, 7, 1701394.

132

Rafieerad, A.; Yan, W. A.; Sequiera, G. L.; Sareen, N.; Abu‐El‐Rub, E.; Moudgil, M.; Dhingra, S. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv. Healthc. Mater. 2019, 8, 1900569.

133

Han, X. X.; Jing, X. X.; Yang, D. Y.; Lin, H.; Wang, Z. G.; Ran, H. T.; Li, P.; Chen, Y. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. Theranostics 2018, 8, 4491–4508.

134

Liu, Z.; Lin, H.; Zhao, M. L.; Dai, C.; Zhang, S. J.; Peng, W. J.; Chen, Y. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics 2018, 8, 1648–1664.

135

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer–carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

136

Kang, Z. H.; Tsang, C. H. A.; Zhang, Z. D.; Zhang, M. L.; Wong, N. b.; Zapien, J. A.; Shan, Y. Y.; Lee, S. T. A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: From quantum dots to nanowires. J. Am. Chem. Soc. 2007, 129, 5326–5327.

137

Dong, H. F.; Tang, S. S.; Hao, Y. S.; Yu, H. Z.; Dai, W. H.; Zhao, G. F.; Cao, Y.; Lu, H. T.; Zhang, X. J.; Ju, H. X. Fluorescent MoS2 quantum dots: Ultrasonic preparation, up-conversion and down-conversion bioimaging, and photodynamic therapy. ACS Appl. Mater. Interfaces 2016, 8, 3107–3114.

138

Wei, S.; Zhang, R.; Liu, Y.; Ding, H.; Zhang, Y. L. Graphene quantum dots prepared from chemical exfoliation of multiwall carbon nanotubes: An efficient photocatalyst promoter. Catal. Commun. 2016, 74, 104–109.

139

de Medeiros, T. V.; Manioudakis, J.; Noun, F.; Macairan, J. R.; Victoria, F.; Naccache, R. Microwave-assisted synthesis of carbon dots and their applications. J. Mater. Chem. C 2019, 7, 7175–7195.

140

Jiang, J.; He, Y.; Li, S. Y.; Cui, H. Amino acids as the source for producing carbon nanodots: Microwave assisted one-step synthesis, intrinsic photoluminescence property and intense chemiluminescence enhancement. Chem. Commun. 2012, 48, 9634–9636.

141

Ali, J.; Siddiqui, G. U. D.; Yang, Y. J.; Lee, K. T.; Um, K.; Choi, K. H. Direct synthesis of graphene quantum dots from multilayer graphene flakes through grinding assisted co-solvent ultrasonication for all-printed resistive switching arrays. RSC Adv. 2016, 6, 5068–5078.

142

Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

143

Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreeprasad, T. S.; Zhao, P.; Yu, Z. Q.; Li, N. Heteroatom-doped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219.

144

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

145

Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333–337.

146

Mukhina, M. V.; Maslov, V. G.; Baranov, A. V.; Fedorov, A. V.; Orlova, A. O.; Purcell-Milton, F.; Govan, J.; Gun’ko, Y. K. Intrinsic chirality of CdSe/ZnS quantum dots and quantum rods. Nano Lett. 2015, 15, 2844–2851.

147

Coropceanu, I.; Rossinelli, A.; Caram, J. R.; Freyria, F. S.; Bawendi, M. G. Slow-injection growth of seeded CdSe/CdS nanorods with unity fluorescence quantum yield and complete shell to core energy transfer. ACS Nano 2016, 10, 3295–3301.

148

Bridewell, V. L.; Alam, R.; Karwacki, C. J.; Kamat, P. V. CdSe/CdS nanorod photocatalysts: Tuning the interfacial charge transfer process through shell length. Chem. Mater. 2015, 27, 5064–5071.

149

Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 2016, 10, 484–491.

150

Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

151

Vinci, J. C.; Colon, L. A. Fractionation of carbon-based nanomaterials by anion-exchange HPLC. Anal. Chem. 2012, 84, 1178–1183.

152

Barman, S.; Sadhukhan, M. Facile bulk production of highly blue fluorescent graphitic carbon nitride quantum dots and their application as highly selective and sensitive sensors for the detection of mercuric and iodide ions in aqueous media. J. Mater. Chem. 2012, 22, 21832–21837.

153

Shan, X. Y.; Chai, L. J.; Ma, J. J.; Qian, Z. S.; Chen, J. R.; Feng, H. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 2014, 139, 2322–2325.

154

Chandra, S.; Patra, P.; Pathan, S. H.; Roy, S.; Mitra, S.; Layek, A.; Bhar, R.; Pramanik, P.; Goswami, A. Luminescent S-doped carbon dots: an emergent architecture for multimodal applications. J. Mater. Chem. B 2013, 1, 2375–2382.

155

Xue, M. Y.; Zhang, L. L.; Zhan, Z. H.; Zou, M. B.; Huang, Y.; Zhao, S. L. Sulfur and nitrogen binary doped carbon dots derived from ammonium thiocyanate for selective probing doxycycline in living cells and multicolor cell imaging. Talanta 2016, 150, 324–330.

156

Zhao, J.; Li, F. T.; Zhang, S.; An, Y.; Sun, S. Q. Preparation of N-doped yellow carbon dots and N, P co-doped red carbon dots for bioimaging and photodynamic therapy of tumors. New J. Chem. 2019, 43, 6332–6342.

157

Chen, N.; He, Y.; Su, Y. Y.; Li, X. M.; Huang, Q.; Wang, H. F.; Zhang, X. Z.; Tai, R. Z.; Fan, C. H. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33, 1238–1244.

158

Zhang, T.; Hu, Y. Y.; Tang, M.; Kong, L.; Ying, J. L.; Wu, T. S.; Xue, Y. Y.; Pu, Y. P. Liver toxicity of cadmium telluride quantum dots (CdTe QDs) due to oxidative stress in vitro and in vivo. Int. J. Mol. Sci. 2015, 16, 23279–23299.

159

Mu, X. Y.; Wang, J. Y.; Bai, X. T.; Xu, F. J.; Liu, H. X.; Yang, J.; Jing, Y. Q.; Liu, L. F.; Xue, X. H.; Dai, H. T. et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice. ACS Appl. Mater. Interfaces 2017, 9, 20399–20409.

160

Lin, C. H.; Yang, M. H.; Chang, L. W.; Yang, C. S.; Chang, H.; Chang, W. H.; Tsai, M. H.; Wang, C. J.; Lin, P. P. Cd/Se/Te-based quantum dot 705 modulated redox homeostasis with hepatotoxicity in mice. Nanotoxicology 2011, 5, 650–663.

161

Vallières, L.; Rivest, S. Interleukin-6 is a needed proinflammatory cytokine in the prolonged neural activity and transcriptional activation of corticotropin-releasing factor during endotoxemia. Endocrinology 1999, 140, 3890–3903.

162

Del Campo, J. A.; Gallego, P.; Grande, L. Role of inflammatory response in liver diseases: Therapeutic strategies. World J. Hepatol. 2018, 10, 1–7.

163

Manshian, B. B.; Soenen, S. J.; Al-Ali, A.; Brown, A.; Hondow, N.; Wills, J.; Jenkins, G. J.; Doak, S. H. Cell type-dependent changes in CdSe/ZnS quantum dot uptake and toxic endpoints. Toxicol. Sci. 2015, 144, 246–258.

164

Shao, J. D.; Xie, H. H.; Huang, H.; Li, Z. B.; Sun, Z. B.; Xu, Y. H.; Xiao, Q. L.; Yu, X. F.; Zhao, Y. T.; Zhang, H. et al. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nat. Commun. 2016, 7, 12967.

165

Alves, J. Q.; Máximo, L. N. C.; Franco, L. P.; da Silva, R. S.; de Oliveira, M. F. Fluorescence-quenching CdTe quantum dots applied for identification of cocaine-structure analogues. Anal. Methods 2019, 11, 185–191.

166

Tang, Y.; Han, S. L.; Liu, H. M.; Chen, X.; Huang, L.; Li, X. H.; Zhang, J. X. The role of surface chemistry in determining in vivo biodistribution and toxicity of CdSe/ZnS core–shell quantum dots. Biomaterials 2013, 34, 8741–8755.

167

Hola, K.; Zhang, Y.; Wang, Y.; Giannelis, E. P.; Zboril, R.; Rogach, A. L. Carbon dots—Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014, 9, 590–603.

168

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

169

Shamsipur, M.; Barati, A.; Karami, S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: Achievements made, challenges remaining, and applications. Carbon 2017, 124, 429–472.

170

Shuhendler, A. J.; Prasad, P.; Chan, H. K. C.; Gordijo, C. R.; Soroushian, B.; Kolios, M.; Yu, K.; O’Brien, P. J.; Rauth, A. M.; Wu, X. Y. Hybrid quantum dot−fatty ester stealth nanoparticles: Toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano 2011, 5, 1958–1966.

171

Li, Y.; Liu, Z. M.; Hou, Y. Q.; Yang, G. C.; Fei, X. X.; Zhao, H. N.; Guo, Y. X.; Su, C. K.; Wang, Z.; Zhong, H. Q. et al. Multifunctional nanoplatform based on black phosphorus quantum dots for bioimaging and photodynamic/photothermal synergistic cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 25098–25106.

172

Ouarrad, H.; Ramadan, F. Z.; Drissi, L. B. Size engineering optoelectronic features of C, Si and CSi hybrid diamond-shaped quantum dots. RSC Adv. 2019, 9, 28609–28617.

173

Wang, X. J.; Wang, Y. N.; He, H.; Chen, X.; Sun, X.; Sun, Y. W.; Zhou, G. J.; Xu, H.; Huang, F. Steering graphene quantum dots in living cells: Lighting up the nucleolus. J. Mater. Chem. B 2016, 4, 779–784.

174

Yu, C. Y.; Xuan, T. T.; Chen, Y. W.; Zhao, Z. J.; Liu, X. X.; Lian, G. H.; Li, H. L. Gadolinium-doped carbon dots with high quantum yield as an effective fluorescence and magnetic resonance bimodal imaging probe. J. Alloys Compd. 2016, 688, 611–619.

175

Arvaniti, E.; Claassen, M. Sensitive detection of rare disease-associated cell subsets via representation learning. Nature Commun. 2017, 8, 14828.

176

Gu, W.; Yan, Y. H.; Pei, X. Y.; Zhang, C. L.; Ding, C. P.; Xian, Y. Z. Fluorescent black phosphorus quantum dots as label-free sensing probes for evaluation of acetylcholinesterase activity. Sens. Actuators B: Chem. 2017, 250, 601–607.

177

Speranskaya, E. S.; Dmitrienko, V. P.; Dmitrienko, A. O.; Potapkina, D. A.; Goryacheva, I. Y. The influence of synthetic conditions on optical properties of cadmium selenide quantum dots. Nanotechnol. Russia 2011, 6, 516.

178

Ye, X. X.; Xiang, Y. H.; Wang, Q. R.; Li, Z.; Liu, Z. H. A red emissive two-photon fluorescence probe based on carbon dots for intracellular pH detection. Small 2019, 15, 1901673.

179

Li, C.; Ji, Y.; Wang, C.; Liang, S. J.; Pan, F.; Zhang, C. L.; Chen, F.; Fu, H. L.; Wang, K.; Cui, D. X. BRCAA1 antibody- and Her2 antibody-conjugated amphiphilic polymer engineered CdSe/ZnS quantum dots for targeted imaging of gastric cancer. Nanoscale Res. Lett. 2014, 9, 244.

180

Otis, G.; Bhattacharya, S.; Malka, O.; Kolusheva, S.; Bolel, P.; Porgador, A.; Jelinek, R. Selective labeling and growth inhibition of Pseudomonas aeruginosa by aminoguanidine carbon dots. ACS Infectious Dis. 2019, 5, 292–302.

181

Yang, L.; Deng, W. F.; Cheng, C.; Tan, Y. M.; Xie, Q. Q.; Yao, S. Z. Fluorescent immunoassay for the detection of pathogenic bacteria at the single-cell level using carbon dots-encapsulated breakable organosilica nanocapsule as labels. ACS Appl. Mater. Interfaces 2018, 10, 3441–3448.

182

Liu, J. H.; Cao, L.; LeCroy, G. E.; Wang, P.; Meziani, M. J.; Dong, Y. Y.; Liu, Y. F.; Luo, P. G.; Sun, Y. P. Carbon “quantum” dots for fluorescence labeling of cells. ACS Appl. Mater. Interfaces 2015, 7, 19439–19445.

183

Zhao, J. Y.; Chen, G.; Gu, Y. P.; Cui, R.; Zhang, Z. L.; Yu, Z. L.; Tang, B.; Zhao, Y. F.; Pang, D. W. Ultrasmall magnetically engineered Ag2Se quantum dots for instant efficient labeling and whole-body high-resolution multimodal real-time tracking of cell-derived microvesicles. J. Am. Chem. Soc. 2016, 138, 1893–1903.

184

Law, J. W. F.; Ab Mutalib, N. S.; Chan, K. G.; Lee, L. H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770.

185

Brecher, M. E.; Hay, S. N. Bacterial contamination of blood components. Clin. Microbiol. Rev. 2005, 18, 195–204.

186

Huo, F.; Liang, W. F.; Tang, Y. R.; Zhang, W.; Liu, X. H.; Pei, D. S.; Wang, H. B.; Jia, W. J.; Jia, P. P.; Yang, F. Full-color carbon dots with multiple red-emission tuning: On/off sensors, in vitro and in vivo multicolor bioimaging. J. Mater. Sci. 2019, 54, 6815–6825.

187

Lin, Y.; Zhang, L. Z.; Yao, W.; Qian, H. Q.; Ding, D.; Wu, W.; Jiang, X. Q. Water-soluble chitosan-quantum dot hybrid nanospheres toward bioimaging and biolabeling. ACS Appl. Mater. Interfaces 2011, 3, 995–1002.

188

Reasoner, D. J.; Geldreich, E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 1985, 49, 1–7.

189

Gao, J.; Li, L.; Ho, P. L.; Mak, G. C.; Gu, H.; Xu, B. Combining fluorescent probes and biofunctional magnetic nanoparticles for rapid detection of bacteria in human blood. Adv. Mater. 2006, 18, 3145–3148.

190

Mothershed, E. A.; Whitney, A. M. Nucleic acid-based methods for the detection of bacterial pathogens: Present and future considerations for the clinical laboratory. Clin. Chim. Acta 2006, 363, 206–220.

191

Wang, J. Y.; Zhu, Y. H.; Wang, L. Synthesis and applications of red-emissive carbon dots. Chem. Rec. 2019, 19, 2083–2094.

192

Gao, W. L.; Song, H. H.; Wang, X.; Liu, X. Q.; Pang, X. B.; Zhou, Y. M.; Gao, B.; Peng, X. J. Carbon dots with red emission for sensing of Pt2+, Au3+, and Pd2+ and their bioapplications in vitro and in vivo. ACS Appl. Mater. Interfaces 2018, 10, 1147–1154.

193

Iqbal, A.; Tian, Y. J.; Wang, X. D.; Gong, D. Y.; Guo, Y. L.; Iqbal, K.; Wang, Z. P.; Liu, W. S.; Qin, W. W. Carbon dots prepared by solid state method via citric acid and 1,10-phenanthroline for selective and sensing detection of Fe2+ and Fe3+. Sens. Actuators B: Chem. 2016, 237, 408–415.

194

Liu, S. Y.; Pang, S.; Na, W. D.; Su, X. G. Near-infrared fluorescence probe for the determination of alkaline phosphatase. Biosens. Bioelectron. 2014, 55, 249–254.

195

Ma, Y.; Chen, A. Y.; Huang, Y. Y.; He, X.; Xie, X. F.; He, B.; Yang, J. H.; Wang, X. Y. Off-on fluorescent switching of boron-doped carbon quantum dots for ultrasensitive sensing of catechol and glutathione. Carbon 2020, 162, 234–244.

196

Hahn, M. A.; Tabb, J. S.; Krauss, T. D. Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem. 2005, 77, 4861–4869.

197

Gaikwad, A.; Joshi, M.; Patil, K.; Sathaye, S.; Rode, C. Fluorescent carbon-dots thin film for fungal detection and bio-labeling applications. ACS Appl. Bio Mater. 2019, 2, 5829–5840.

198

Hu, J.; Jiang, Y. Z.; Tang, M.; Wu, L. L.; Xie, H. Y.; Zhang, Z. L.; Pang, D. W. Colorimetric-fluorescent-magnetic nanosphere-based multimodal assay platform for Salmonella detection. Anal. Chem. 2018, 91, 1178–1184.

199

Wang, J. J.; Lin, Y.; Jiang, Y. Z.; Zheng, Z. H.; Xie, H. Y.; Lv, C.; Chen, Z. L.; Xiong, L. H.; Zhang, Z. L.; Wang, H. Z. et al. Multifunctional cellular beacons with in situ synthesized quantum dots make pathogen detectable with the naked eye. Anal. Chem. 2019, 91, 7280–7287.

200

Gao, R.; Zhong, Z. T.; Gao, X. M.; Jia, L. Graphene oxide quantum dots assisted construction of fluorescent aptasensor for rapid detection of Pseudomonas aeruginosa in food samples. J. Agric. Chem. 2018, 66, 10898–10905.

201

Alizadeh, N.; Memar, M. Y.; Moaddab, S. R.; Kafil, H. S. Aptamer-assisted novel technologies for detecting bacterial pathogens. Biomed. Pharmacother. 2017, 93, 737–745.

202

Wu, W.; Fang, Z. Y.; Zhao, S. M.; Lu, X. W.; Yu, L. X.; Mei, T.; Zeng, L. W. A simple aptamer biosensor for Salmonellae enteritidis based on fluorescence-switch signaling graphene oxide. RSC Adv. 2014, 4, 22009–22012.

203

Dargaville, T. R.; Farrugia, B. L.; Broadbent, J. A.; Pace, S.; Upton, Z.; Voelcker, N. H. Sensors and imaging for wound healing: A review. Biosens. Bioelectron. 2013, 41, 30–42.

204

Ding, H.; Wei, J. S.; Zhang, P.; Zhou, Z. Y.; Gao, Q. Y.; Xiong, H. M. Solvent-controlled synthesis of highly luminescent carbon dots with a wide color gamut and narrowed emission peak widths. Small 2018, 14, 1800612.

205

Wang, Y. X.; Xu, N.; Li, D. Y.; Zhu, J. Thermal properties of two dimensional layered materials. Adv. Funct. Mater. 2017, 27, 1604134.

206

Yu, G. C.; Zhou, J.; Shen, J.; Tang, G. P.; Huang, F. H. Cationic pillar[6]arene/ATP host–guest recognition: Selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 2016, 7, 4073–4078.

207

Devi, P.; Saini, S.; Kim, K. H. The advanced role of carbon quantum dots in nanomedical applications. Biosens. Bioelectron. 2019, 141, 111158.

208

Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

209

Singh, R.; Lillard, Jr, J. W. Nanoparticle-based targeted drug delivery. Exp. Mol. pathol. 2009, 86, 215–223.

210

Yu, G. C.; Yu, W.; Mao, Z. W.; Gao, C. Y.; Huang, F. H. A pillararene-based ternary drug-delivery system with photocontrolled anticancer drug release. Small 2015, 11, 919–925.

211

Veiseh, O.; Gunn, J. W.; Zhang, M. Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010, 62, 284–304.

212

Zheng, M.; Ruan, S. B.; Liu, S.; Sun, T. T.; Qu, D.; Zhao, H. F.; Xie, Z. G.; Gao, H. L.; Jing, X. B.; Sun, Z. C. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015, 9, 11455–11461.

213

Abate, Y.; Akinwande, D.; Gamage, S.; Wang, H.; Snure, M.; Poudel, N.; Cronin, S. B. Recent progress on stability and passivation of black phosphorus. Adv. Mater. 2018, 30, 1704749.

214

Favron, A.; Gaufrès, E.; Fossard, F.; Phaneuf-L’Heureux, A. L.; Tang, N. Y. W.; Lévesque, P. L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832.

215

Ge, X. X.; Xia, Z. H.; Guo, S. J. Recent advances on black phosphorus for biomedicine and biosensing. Adv. Funct. Mater. 2019, 29, 1900318.

216

Tabish, T. A.; Zhang, S. W.; Winyard, P. G. Developing the next generation of graphene-based platforms for cancer therapeutics: The potential role of reactive oxygen species. Redox Biol. 2018, 15, 34–40.

217

Sun, D.; Ban, R.; Zhang, P. H.; Wu, G. H.; Zhang, J. R.; Zhu, J. J. Hair fiber as a precursor for synthesizing of sulfur-and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 2013, 64, 424–434.

218

Riley, R. S.; Day, E. S. Gold nanoparticle-mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, e1449.

219

Shankar, S. S.; Shereema, R. M.; Rakhi, R. B. Electrochemical determination of adrenaline using MXene/Graphite composite paste electrodes. ACS Appl. Mater. Interfaces 2018, 10, 43343–43351.

220

Yang, X.; An, J. X.; Luo, Z.; Yang, R.; Yan, S. Z.; Liu, D. E.; Fu, H.; Gao, H. A cyanine-based polymeric nanoplatform with microenvironment-driven cascaded responsiveness for imaging-guided chemo-photothermal combination anticancer therapy. J. Mater. Chem. B 2020, 8, 2115–2122.

221

Nourmohammadi, A.; Rahighi, R.; Akhavan, O.; Moshfegh, A. Graphene oxide sheets involved in vertically aligned zinc oxide nanowires for visible light photoinactivation of bacteria. J. Alloys Compd. 2014, 612, 380–385.

222

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

223

Yim, D. B.; Kim, J. E.; Kim, H. I.; Yang, J. K.; Kang, T. W.; Nam, J.; Han, S. H.; Jun, B.; Lee, C. H.; Lee, S. U. et al. Adjustable intermolecular interactions allowing 2D transition metal dichalcogenides with prolonged scavenging activity for reactive oxygen species. Small 2018, 14, 1800026.

224

Choi, J.; Chen, H.; Li, F. R.; Yang, L. M.; Kim, S. S.; Naik, R. R.; Ye, P. D.; Choi, J. H. Nanomanufacturing of 2D transition metal dichalcogenide materials using self-assembled DNA nanotubes. Small 2015, 11, 5520–5527.

225

Tan, E.; Li, B. L.; Ariga, K.; Lim, C.-T.; Garaj, S.; Leong, D. T. Toxicity of two-dimensional layered materials and their heterostructures. Bioconjugate Chem. 2019, 30, 2287–2299.

226

Zhu, X. B.; Ji, X. Y.; Kong, N.; Chen, Y. H.; Mahmoudi, M.; Xu, X. D.; Ding, L.; Tao, W.; Cai, T.; Li, Y. J. et al. Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano 2018, 12, 2922–2938.

227

Feng, L. L.; Xie, R.; Wang, C. Q.; Gai, S. L.; He, F.; Yang, D.; Yang, P. P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano 2018, 12, 11000–11012.

228

Feng, T.; Ai, X. Z.; Ong, H. M.; Zhao, Y. L. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl. Mater. Interfaces 2016, 8, 18732–18740.

229

Yuan, Q.; Hein, S.; Misra, R. D. K. New generation of chitosan-encapsulated ZnO quantum dots loaded with drug: Synthesis, characterization and in vitro drug delivery response. Acta Biomater. 2010, 6, 2732–2739.

230

Feng, T.; Ai, X. Z.; An, G. H.; Yang, P. P.; Zhao, Y. L. Correction to charge-convertible carbon dots for imaging-guided drug delivery with enhanced in vivo cancer therapeutic efficiency. ACS Nano 2016, 10, 5587.

231

Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Lan, M. H.; Zhou, B. J.; Guo, L.; Zhou, H. Y.; Zhang, H. Y.; Wang, Y.; Gu, Y. et al. Carbon dots with intrinsic theranostic properties for bioimaging, red-light-triggered photodynamic/photothermal simultaneous therapy in vitro and in vivo. Adv. Healthc. Mater. 2016, 5, 665–675.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 May 2021
Revised: 16 July 2021
Accepted: 18 July 2021
Published: 04 September 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFC2005500), the National Natural Science Foundation of China (Nos. 51875577 and 81972901), the Key Research and Development Program of Science and Technology Department of Sichuan Province (Nos. 2020YFS0570 and 2019YFS0514), Science and Technology Project of Chengdu (No. 2019-YF05-00784-SN), and Science Foundation of China University of Petroleum (Nos. 2462020YXZZ018 and 2462019QNXZ02).

Return