Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Porous organic polymers hold great promise for molecular sieving membrane separation. Although the inclusion of functional ionic liquid (IL) in the pores offers a facile way to manipulate their separation properties, the IL leaching during the separation process is difficult to avoid. Herein, we report a strategy to in-situ encapsulate ILs into the micropores of the conjugated microporous polymer membrane via a 6-min electropolymerization and further seal the aperture of the pores to prevent ILs leaching by solvent-assisted micropore tightening (SAMT). Upon screening the binding energy between different ILs and gas molecules, two ILs were selected to be incorporated into the membrane for CO2/CH4 and O2/N2 gas separations. The resultant separation performances surpass the 2008 Robeson upper bound. Notably, the ILs can be locked in the micropores by a facile high surface tension solvent treatment process to improve their separation stability, as evidenced by a 7-day continuous test. This simple and controllable process not only enables efficient and steady separation performance but also provides an effective strategy for confining and sealing functional guest molecules in the porous solids for various applications.
Basu, S.; Khan, A. L.; Cano-Odena, A.; Liu, C. Q.; Vankelecom, I. F. J. Membrane-based technologies for biogas separations. Chem. Soc. Rev. 2010, 39, 750–768.
Chawla, M.; Saulat, H.; Masood Khan, M.; Mahmood Khan, M.; Rafiq, S.; Cheng, L. J.; Iqbal, T.; Rasheed, M. I.; Farooq, M. Z.; Saeed, M. et al. Membranes for CO2/CH4 and CO2/N2 gas separation. Chem. Eng. Technol. 2020, 43, 184–199.
Chuah, C. Y.; Goh, K.; Yang, Y. Q.; Gong, H. Q.; Li, W.; Karahan, H. E.; Guiver, M. D.; Wang, R.; Bae, T. H. Harnessing filler materials for enhancing biogas separation membranes. Chem. Rev. 2018, 118, 8655–8769.
Bae, Y. S.; Hauser, B. G.; Farha, O. K.; Hupp, J. T.; Snurr, R. Q. Enhancement of CO2/CH4 selectivity in metal-organic frameworks containing lithium cations. Micropor. Mesopor. Mater. 2011, 141, 231–235.
Dalane, K.; Dai, Z. D.; Mogseth, G.; Hillestad, M.; Deng, L. Y. Potential applications of membrane separation for subsea natural gas processing: A review. J. Nat. Gas Sci. Eng. 2017, 39, 101–117.
Deng, L. Y.; Hägg, M. B. Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int. J. Greenh. Gas Con. 2010, 4, 638–646.
George, G.; Bhoria, N.; AlHallaq, S.; Abdala, A.; Mittal, V. Polymer membranes for acid gas removal from natural gas. Sep. Purif. Technol. 2016, 158, 333–356.
Yu, G. L.; Rong, H. Z.; Zou, X. Q.; Zhu, G. S. Engineering microporous organic framework membranes for CO2 separations. Mol. Syst. Des. Eng. 2017, 2, 182–190.
Shekhah, O.; Chernikova, V.; Belmabkhout, Y.; Eddaoudi, M. Metal–organic framework membranes: From fabrication to gas separation. Crystals 2018, 8, 412.
Jiao, W. M.; Ban, Y. J.; Shi, Z. X.; Jiang, X. S.; Li, Y. S.; Yang, W. S. High performance carbon molecular sieving membranes derived from pyrolysis of metal-organic framework zif-108 doped polyimide matrices. Chem. Commun. 2016, 52, 13779–13782.
Li, Y. S.; Yang, W. S. Molecular sieve membranes: From 3d zeolites to 2d mofs. Chin. J. Catal. 2015, 36, 692–697.
Wang, Z. F.; Zhang, S. N.; Chen, Y.; Zhang, Z. J.; Ma, S. Q. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 2020, 49, 708–735.
Rong, H. Z.; Wang, G. M.; Yan, J. X.; Zou, X. Q.; Zhu, G. S. Surface-gel-conversion synthesis of submicron-thick mfi zeolite membranes to expedite shape-selective separation of hexane isomers. Sci. China Mater. 2021, 64, 374–382.
Brennecke, J. F.; Gurkan, B. E. Ionic liquids for CO2 capture and emission reduction. J. Phys. Chem. Lett. 2010, 1, 3459–3464.
Yan, X. R.; Anguille, S.; Bendahan, M.; Moulin, P. Ionic liquids combined with membrane separation processes: A review. Sep. Purif. Technol. 2019, 222, 230–253.
Zeng, S. J.; Zhang, X. P.; Bai, L.; Zhang, X. C.; Wang, H.; Wang, J. J.; Bao, D.; Li, M. D.; Liu, X. Y.; Zhang, S. J. Ionic-liquid-based CO2 capture systems: Structure, interaction and process. Chem. Rev. 2017, 117, 9625–9673.
Tomé, L. C.; Florindo, C.; Freire, C. S. R.; Rebelo, L. P. N.; Marrucho, I. M. Playing with ionic liquid mixtures to design engineered CO2 separation membranes. Phys. Chem. Chem. Phys. 2014, 16, 17172–17182.
Tomé, L. C.; Patinha, D. J. S.; Freire, C. S. R.; Rebelo, L. P. N.; Marrucho, I. M. CO2 separation applying ionic liquid mixtures: The effect of mixing different anions on gas permeation through supported ionic liquid membranes. RSC Adv. 2013, 3, 12220–12229.
Neves, L. A.; Crespo, J. G.; Coelhoso, I. M. Gas permeation studies in supported ionic liquid membranes. J. Membr. Sci. 2010, 357, 160–170.
Scovazzo, P.; Havard, D.; McShea, M.; Mixon, S.; Morgan, D. Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes. J. Membr. Sci. 2009, 327, 41–48.
Condemarin, R.; Scovazzo, P. Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium rtil data. Chem. Eng. J. 2009, 147, 51–57.
Ferguson, L.; Scovazzo, P. Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids: Data and correlations. Ind. Eng. Chem. Res. 2007, 46, 1369–1374.
Shahkaramipour, N.; Adibi, M.; Seifkordi, A. A.; Fazli, Y. Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes. J. Membr. Sci. 2014, 455, 229–235.
Lozano, L. J.; Godínez, C.; de los Ríos, A. P.; Hernández-Fernández, F. J.; Sánchez-Segado, S.; Alguacil, F. J. Recent advances in supported ionic liquid membrane technology. J. Membr. Sci. 2011, 376, 1–14.
Gao, H. S.; Bai, L.; Han, J. L.; Yang, B. B.; Zhang, S. J.; Zhang, X. P. Functionalized ionic liquid membranes for CO2 separation. Chem. Commun. 2018, 54, 12671–12685.
Tomé, L. C.; Marrucho, I. M. Ionic liquid-based materials: A platform to design engineered CO2 separation membranes. Chem. Soc. Rev. 2016, 45, 2785–2824.
Ban, Y. J.; Li, Z. J.; Li, Y. S.; Peng, Y.; Jin, H.; Jiao, W. M.; Guo, A.; Wang, P.; Yang, Q. Y.; Zhong, C. L. et al. Confinement of ionic liquids in nanocages: Tailoring the molecular sieving properties of zif-8 for membrane-based CO2 capture. Angew. Chem., Int. Ed. 2015, 54, 15483–15487.
Gupta, K. M.; Chen, Y. F.; Jiang, J. W. Ionic liquid membranes supported by hydrophobic and hydrophilic metal-organic frameworks for CO2 capture. J. Phys. Chem. C 2013, 117, 5792–5799.
Chen, S.; Behera, N.; Yang, C.; Dong, Q. B.; Zheng, B. S.; Li, Y. Y.; Tang, Q.; Wang, Z. X.; Wang, Y. Q.; Duan, J. G. A chemically stable nanoporous coordination polymer with fixed and free Cu2+ ions for boosted C2H2/CO2 separation. Nano Res. 2021, 14, 546–553.
Vismara, R.; Di Nicola, C.; Millán, R. G. S.; Domasevich, K. V.; Pettinari, C.; Navarro, J. A. R.; Galli, S. Efficient hexane isomers separation in isoreticular bipyrazolate metal-organic frameworks: The role of pore functionalization. Nano Res. 2021, 14, 532–540.
Yang, B. Q.; Zhou, F.; Liu, S. M.; Wang, P. X.; Alshammari, A. S.; Deng, Y. Q. Interaction between CO2 and ionic liquids confined in the nanopores of SAPO-11. RSC Adv. 2015, 5, 48908–48915.
Yu, Y. H.; Mai, J. Z.; Wang, L. F.; Li, X. H.; Jiang, Z.; Wang, F. R. Ship-in-a-bottle synthesis of amine-functionalized ionic liquids in nay zeolite for CO2 capture. Sci. Rep. 2014, 4, 5997.
Zhang, J.; Zhang, Q. H.; Shi, F.; Zhang, S. G.; Qiao, B. T.; Liu, L. Q.; Ma, Y. B.; Deng, Y. Q. Greatly enhanced fluorescence of dicyanamide anion based ionic liquids confined into mesoporous silica gel. Chem. Phys. Lett. 2008, 461, 229–234.
Zhang, S. G.; Zhang, J. H.; Zhang, Y.; Deng, Y. Q. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755–6833.
Zhao, Y.; Wang, X. Y.; Zhang, C.; Jiang, J. X. Conjugated microporous polymers based on tetraphenylethylene for gas adsorption. Acta Chim. Sin. 2015, 73, 634–640.
Yao, C.; Li, G. Y.; Xu, Y. H. Carboxyl-enriched conjugated microporous polymers: Impact of building blocks on porosity and gas adsorption. Acta Phys.-Chim. Sin. 2017, 33, 1898–1904.
Sun, C. J.; Zhao, X. Q.; Wang, P. F.; Wang, H.; Han, B. H. Thiophene-based conjugated microporous polymers: Synthesis, characterization and efficient gas storage. Sci. China Chem. 2017, 60, 1067–1074.
Wang, D. M.; Dong, X. L.; Han, Y.; Liu, Y. L. Separation of hexane isomers by introducing “triangular-like and quadrilateral-like channels” in a bcu-type metal-organic framework. Nano Res. 2021, 14, 526–531.
Zhang, M. X.; Jing, X. C.; Zhao, S.; Shao, P. P.; Zhang, Y. Y.; Yuan, S.; Li, Y. S.; Gu, C.; Wang, X. Q.; Ye, Y. C. et al. Electropolymerization of molecular-sieving polythiophene membranes for H2 separation. Angew. Chem., Int. Ed. 2019, 58, 8768–8772.
Hapiot, P.; Lagrost, C. Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 2008, 108, 2238–2264.
Bara, J. E.; Carlisle, T. K.; Gabriel, C. J.; Camper, D.; Finotello, A.; Gin, D. L.; Noble, R. D. Guide to CO2 separations in imidazolium-based room-temperature ionic liquids. Ind. Eng. Chem. Res. 2009, 48, 2739–2751.
Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400.
Song, T. Q. M.; Morales-Collazo, O.; Brennecke, J. F. Solubility and diffusivity of oxygen in ionic liquids. J. Chem. Eng. Data 2019, 64, 4956–4967.
Geens, J.; Van der Bruggen, B.; Vandecasteele, C. Characterisation of the solvent stability of polymeric nanofiltration membranes by measurement of contact angles and swelling. Chem. Eng. Sci. 2004, 59, 1161–1164.
Wang, Z. B.; Tang, H. L.; Li, J. S.; Pan, M. Morphology change of biaxially oriented polytetrafluoroethylene membranes caused by solvent soakage. J. Appl. Polym. Sci. 2011, 121, 1464–1468.
Feriante, C. H.; Jhulki, S.; Evans, A. M.; Dasari, R. R.; Slicker, K.; Dichtel, W. R.; Marder, S. R. Rapid synthesis of high surface area imine-linked 2D covalent organic frameworks by avoiding pore collapse during isolation. Adv. Mater. 2020, 32, 1905776.
Zhu, D. Y.; Verduzco, R. Ultralow surface tension solvents enable facile cof activation with reduced pore collapse. Acs Appl. Mater. Interfaces 2020, 12, 33121–33127.