Journal Home > Volume 16 , Issue 4

Photocatalytic hydrogen evolution reaction (PC-HER) provides a solution to energy crisis and environmental pollution. Herein, different graphitic carbon nitride (g-C3N4)-based van der Waals (vdW) type II homojunctions have been fabricated and g-C3N4/K-doped g-C3N4 nanosheets have an outstanding PC-HER rate of 1,243 μmol·h−1·g−1 under visible light, higher than that of bulk g-C3N4, doped g-C3N4 nanosheets, and mixed nanosheets. The enhanced PC-HER performance can be ascribed to the cooperative effects of the shortened bandgap, enlarged specific surface area, matched type II energy band structure, “face to face” vdW charge interaction, and peculiarly partite positions of the conduction and valence bands in different layers. Besides, the type II junctions were found superior to binary type II junction. This study highlights the synergistic effect of different strategies in improving the PC-HER capacities of g-C3N4, especially the application of particular vdW junctions, and provides new insights to the structures and mechanism.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

van der Waals type II carbon nitride homojunctions for visible light photocatalytic hydrogen evolution

Show Author's information Xiaojie Li1,2,§Panpan Zhang1,§Huayang Zhang1Wenjie Tian1Yangyang Yang1Kunsheng Hu1Dechao Chen3Qin Li3Xiaoguang Duan1Hongqi Sun4( )Shaobin Wang1( )
School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
Queensland Micro- and Nanotechnology Centre, School of Engineering and Built Environment, Griffith University, Nathan, QLD 4111, Australia
School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia

§ Xiaojie Li and Panpan Zhang contributed equally to this work.

Abstract

Photocatalytic hydrogen evolution reaction (PC-HER) provides a solution to energy crisis and environmental pollution. Herein, different graphitic carbon nitride (g-C3N4)-based van der Waals (vdW) type II homojunctions have been fabricated and g-C3N4/K-doped g-C3N4 nanosheets have an outstanding PC-HER rate of 1,243 μmol·h−1·g−1 under visible light, higher than that of bulk g-C3N4, doped g-C3N4 nanosheets, and mixed nanosheets. The enhanced PC-HER performance can be ascribed to the cooperative effects of the shortened bandgap, enlarged specific surface area, matched type II energy band structure, “face to face” vdW charge interaction, and peculiarly partite positions of the conduction and valence bands in different layers. Besides, the type II junctions were found superior to binary type II junction. This study highlights the synergistic effect of different strategies in improving the PC-HER capacities of g-C3N4, especially the application of particular vdW junctions, and provides new insights to the structures and mechanism.

Keywords: photocatalyst, carbon nitride, hydrogen evolution, van der Waals junction, type II junction

References(50)

[1]

Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change-a review. Energy Policy 2013, 52, 797–809.

[2]

Shaffer, G.; Olsen, S. M.; Pedersen, J. O. P. Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels. Nat. Geosci. 2009, 2, 105–109.

[3]

York, R. Do Alternative energy sources displace fossil fuels? Nat. Clim. Chang 2012, 2, 441–443.

[4]

Tollefson, J. Energy crisis upsets platinum market. Nature 2008, 451, 877.

[5]

Dalton, R. Californian labs feel the heat of energy crisis. Nature 2001, 411, 227.

[6]

Qureshi, M. I.; Rasli, A. M.; Zaman, K. Energy crisis, greenhouse gas emissions and sectoral growth reforms: Repairing the fabricated mosaic. J. Clean. Prod. 2016, 112, 3657–3666.

[7]

Worden, H. M.; Bowman, K. W.; Worden, J. R.; Eldering, A.; Beer, R. Satellite measurements of the clear-sky greenhouse effect from tropospheric ozone. Nat. Geosci. 2008, 1, 305–308.

[8]

Qiao, H.; Zheng, F. T.; Jiang, H. D.; Dong, K. Y. The greenhouse effect of the agriculture-economic growth-renewable energy nexus: Evidence from G20 countries. Sci. Total Environ. 2019, 671, 722–731.

[9]

Mamba, G.; Mishra, A. K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B: Environ. 2016, 198, 347–377.

[10]

Ren, X. M.; Chen, C. L.; Nagatsu, M.; Wang, X. K. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem. Eng. J. 2011, 170, 395–410.

[11]

Wang, W. J.; An, T. C.; Li, G. Y.; Xia, D. H.; Zhao, H. J.; Yu, J. C.; Wong, P. K. Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation. Appl. Catal. B: Environ. 2017, 217, 570–580.

[12]

Li, J. H.; Shen, B.; Hong, Z. H.; Lin, B. Z.; Gao, B. F.; Chen, Y. L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Commun. 2012, 48, 12017–12019.

[13]

Zeng, D. Q.; Zhou, T.; Ong, W. J.; Wu, M. D.; Duan, X. G.; Xu, W. J.; Chen, Y. Z.; Zhu, Y. A.; Peng, D. L. Sub-5 nm ultra-fine FeP nanodots as efficient Co-catalysts modified porous g-C3N4 for precious-metal-free photocatalytic hydrogen evolution under visible light. ACS Appl. Mater. Interfaces 2019, 11, 5651–5660.

[14]

Wang, X. C.; Maeda K.; Thomas A.; Takanabe K.; Xin G.; Carlsson J. M.; Domen K.; Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.

[15]

Huang, Z. F.; Song, J. J.; Pan, L.; Wang, Z. M.; Zhang X. Q.; Zou J. J.; Mi W. B.; Zhang X. W.; Wang L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656.

[16]

Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Appl. Catal. B: Environ. 2021, 283, 119660.

[17]

Li, X. J.; Zhang, H. Y.; Liu, Y. Z.; Duan, X. G.; Xu, X. Y.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Synergy of NiO quantum dots and temperature on enhanced photocatalytic and thermophoto hydrogen evolution. Chem. Eng. J. 2020, 390, 124634.

[18]

Zhang, J. Q.; Li, Y. G.; Zhao, X. L.; Zhang, H. Y.; Wang, L.; Chen, H. J.; Wang, S. J.; Xu, X. Y.; Shi, L.; Zhang, L. C. et al. A hydrogen-initiated chemical epitaxial growth strategy for in-plane heterostructured photocatalyst. ACS Nano 2020, 14, 17505–17514.

[19]

Yang, S. B.; Gong, Y. J.; Zhang, J. S.; Zhan, L.; Ma, L. L.; Fang, Z. Y.; Vajtai, R.; Wang, X. C.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

[20]

Wu, J. J.; Li, N.; Zhang, X. H.; Fang, H. B.; Zheng, Y. Z.; Tao, X. Heteroatoms binary-doped hierarchical porous g-C3N4 nanobelts for remarkably enhanced visible-light-driven hydrogen evolution. Appl. Catal. B: Environ. 2018, 226, 61–70.

[21]

Zhang, L. S.; Ding, N.; Lou, L. C.; Iwasaki, K.; Wu, H. J.; Luo, Y. H.; Li, D. M.; Nakata, K.; Fujishima, A.; Meng, Q. B. Localized surface plasmon resonance enhanced photocatalytic hydrogen evolution via Pt@Au NRs/C3N4 nanotubes under visible-light irradiation. Adv. Funct. Mater. 2019, 29, 1806774.

[22]

Fang, L. J.; Wang, X. L.; Zhao, J. J.; Li, Y. H.; Wang, Y. L.; Du, X. L.; He, Z. F.; Zeng, H. D.; Yang, H. G. One-step fabrication of porous oxygen-doped g-C3N4 with feeble nitrogen vacancies for enhanced photocatalytic performance. Chem. Commun. 2016, 52, 14408–14411.

[23]

Cheng, C.; Zong, S. C.; Shi, J. W.; Xue, F.; Zhang, Y. Z.; Guan, X. J.; Zheng, B. T.; Deng, J. K.; Guo, L. J. Facile preparation of nanosized mop as cocatalyst coupled with g-C3N4 by surface bonding state for enhanced photocatalytic hydrogen production. Appl. Catal. B: Environ. 2020, 265, 118620.

[24]

Zhu, Y. S.; Xu, Y.; Hou, Y. D.; Ding, Z. X.; Wang, X. C. Cobalt sulfide modified graphitic carbon nitride semiconductor for solar hydrogen production. Int. J. Hydrogen Energy 2014, 39, 11873–11879.

[25]

Ran, J. R.; Guo, W. W.; Wang, H. L.; Zhu, B. C.; Yu, J. G.; Qiao, S. Z. Metal-free 2D/2D phosphorene/g-C3N4 van der Waals heterojunction for highly enhanced visible-light photocatalytic H2 production. Adv. Mater. 2018, 30, 1800128.

[26]

Li, H. Y.; Tian, H.; Wang, X. D.; Pi, M. Y.; Wei, S. S.; Zhu, H. C.; Zhang, D. K.; Chen, S. J. Self-coupled g-C3N4 van der Waals heterojunctions for enhanced photocatalytic hydrogen production. ACS Appl. Energy Mater. 2019, 2, 4692–4699.

[27]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[28]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[29]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[30]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[31]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

[32]

Liu, J. N.; Jia, Q. H.; Long, J. L.; Wang, X. X.; Gao, Z. W.; Gu, Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst. Appl. Catal. B: Environ. 2018, 222, 35–43.

[33]

Suryawanshi, A.; Dhanasekaran, P.; Mhamane, D.; Kelkar, S.; Patil, S.; Gupta, N.; Ogale, S. Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: Electronic and morphological effects. Int. J. Hydrogen Energy 2012, 37, 9584–9589.

[34]

Fang, Z. Y.; Hong, Y. Z.; Li, D.; Luo, B. F.; Mao, B. D.; Shi, W. D. One-step nickel foam assisted synthesis of holey g-carbon nitride nanosheets for efficient visible-light photocatalytic H2 evolution. ACS Appl. Mater. Interfaces 2018, 10, 20521–20529.

[35]

Liu, J. H.; Zhang, T. K.; Wang, Z. C.; Dawson, G.; Chen, W. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity. J. Mater. Chem. 2011, 21, 14398–14401.

[36]

Zhang, M.; Bai, X. J.; Liu, D.; Wang, J.; Zhu, Y. F. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position. Appl. Catal. B: Environ. 2015, 164, 77–81.

[37]

Wang, Y. Y.; Zhao, S.; Zhang, Y. W.; Fang, J. S.; Zhou, Y. M.; Yuan, S. H.; Zhang, C.; Chen, W. X. One-pot synthesis of K-doped g-C3N4 nanosheets with enhanced photocatalytic hydrogen production under visible-light irradiation. Appl. Surf. Sci. 2018, 440, 258–265.

[38]

Babu, P.; Mohanty, S.; Naik, B.; Parida, K. Synergistic effects of boron and sulfur Co-doping into graphitic carbon nitride framework for enhanced photocatalytic activity in visible light driven hydrogen generation. ACS Appl. Energy Mater. 2018, 1, 5936–5947.

[39]

Chen, P. F.; Xing, P. X.; Chen, Z. Q.; Lin, H. J.; He, Y. M. Rapid and energy-efficient preparation of boron doped g-C3N4 with excellent performance in photocatalytic H2-evolution. Int. J. Hydrogen Energy 2018, 43, 19984–19989.

[40]

Guo, Y. R.; Liu, Q.; Li, Z. H.; Zhang, Z. G.; Fang, X. M. Enhanced photocatalytic hydrogen evolution performance of mesoporous graphitic carbon nitride co-doped with potassium and iodine. Appl. Catal. B: Environ. 2018, 221, 362–370.

[41]

Wu, M.; Yan, J. M.; Zhang, X. W.; Zhao, M.; Jiang, Q. Ag2O modified g-C3N4 for highly efficient photocatalytic hydrogen generation under visible light irradiation. J. Mater. Chem. A 2015, 3, 15710–15714.

[42]

Yang, L. Y.; Liu, J.; Yang, L. P.; Zhang, M.; Zhu, H.; Wang, F.; Yin, J. Co3O4 imbedded g-C3N4 heterojunction photocatalysts for visible-light-driven hydrogen evolution. Renew. Energy 2020, 145, 691–698.

[43]

Xu, H.; Yi, J. J.; She, X. J.; Liu, Q.; Song, L.; Chen, S. M.; Yang, Y. C.; Song, Y. H.; Vajtai, R.; Lou, J. et al. 2D heterostructure comprised of metallic 1T-MoS2/monolayer O-g-C3N4 towards efficient photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2018, 220, 379–385.

[44]

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

[45]

Schwinghammer, K.; Mesch, M. B.; Duppel, V.; Ziegler, C.; Senker, J.; Lotsch, B. V. Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 1730–1733.

[46]

Wang, Y. Y.; Zhang, Y. W.; Zhao, S.; Huang, Z. W.; Chen, W. X.; Zhou, Y. M.; Lv, X. S.; Yuan, S. H. Bio-template synthesis of Mo-doped polymer carbon nitride for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 248, 44–53.

[47]

Liu, Y. Z.; Zhang, H. Y.; Ke, J.; Zhang, J. Q.; Tian, W. J.; Xu, X. Y.; Duan, X. G.; Sun, H. Q.; Tade, M. O.; Wang, S. B. 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution. Appl. Catal. B: Environ. 2018, 228, 64–74.

[48]

Han, Q.; Zhao, F.; Hu, C. G.; Lv, L. X.; Zhang, Z. P.; Chen, N.; Qu, L. T. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting. Nano Res. 2015, 8, 1718–1728.

[49]

Ma, L. T.; Fan, H. Q.; Wang, J.; Zhao, Y. W.; Tian, H. L.; Dong, G. Z. Water-assisted ions in situ intercalation for porous polymeric graphitic carbon nitride nanosheets with superior photocatalytic hydrogen evolution performance. Appl. Catal. B: Environ. 2016, 190, 93–102.

[50]

Wang, K.; Li, Q.; Liu, B. S.; Cheng, B.; Ho, W. K.; Yu, J. G. Sulfur-doped g-C3N4 with enhanced photocatalytic CO2-reduction performance. Appl. Catal. B: Environ. 2015, 176–177, 44–52.

File
12274_2021_3744_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 April 2021
Revised: 02 July 2021
Accepted: 15 July 2021
Published: 16 July 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the Australian Research Council (No. DP170104264). The authors acknowledge the technical supports from the Australian Synchrotron, Victoria, Australia, part of ANSTO. The simulations were performed on resources provided by the Pawsey Supercomputing Centre with funding from the Australian Government and the Government of Western Australia.

Return