Journal Home > Volume 15 , Issue 3

Small biomolecules (m/z < 500) are the material basis of organisms and participate in life activities, but their comprehensive and accurate detection in complex samples remains a challenge. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful detection tool for molecular analysis with high throughput. The development of a new matrix is essential to improve the efficiency of the MALDI-MS for molecular compound detection. In this work, the sandwich-like gold nanoparticles@mesoporous silica nanocomposite@silver nanoparticles (Au@MSN@Ag) nanospheres were prepared by layer-by-layer super-assembly strategy, and can be used as a novel matrix for the quantitative detection and enrichment of small biomolecules by LDI-MS. The sandwich-like nanospheres form a unique plasma resonant cavity that effectively absorbs the laser energy, while the homogeneous mesoporous structure of MSN can lock the analyte, which is essential for efficient LDI of small molecules. Compared to traditional matrices, Au@MSN@Ag shows the advantages of low background, wide application range, high sensitivity, super high salt and protein tolerance, and good stability. For example, the detection limit of glucose was as low as 5 fmol, and showed a good linear relationship in the range of 1−750 μg/mL. Au@MSN@Ag assisted LDI-MS allows the enrichment and detection of small molecules in traditional Chinese medicine (TCM) without derivatization and purification, classification of herbs using the accurate quantitative results oligosaccharides, and identification of gelatin by amino acid content. This research could help in designing more efficient nanostructure matrices and further explored the application of LDI-MS.


menu
Abstract
Full text
Outline
About this article

Super-assembled sandwich-like Au@MSN@Ag nanomatrices for high-throughput and efficient detection of small biomolecules

Show Author's information Dantong Zhao1,3,§Chunxia Ma2,§( )Meng Gao2Yong Li2Bo Yang2Hui Li1Runhao Zhang2Minglu Hao2Jing Huang2Kang Liang4Pu Chen5Lei Xie6Rong Rong1( )Biao Kong6( )
College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
Shandong Analysis and Test Center, National Supercomputer Research Center of Advanced Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
Heze Institute for Food and Drug Control, Heze 274000, China
School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, NSW 2052, Australia
Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai 200032, China

§Dantong Zhao and Chunxia Ma contributed equally to this work.

Abstract

Small biomolecules (m/z < 500) are the material basis of organisms and participate in life activities, but their comprehensive and accurate detection in complex samples remains a challenge. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a powerful detection tool for molecular analysis with high throughput. The development of a new matrix is essential to improve the efficiency of the MALDI-MS for molecular compound detection. In this work, the sandwich-like gold nanoparticles@mesoporous silica nanocomposite@silver nanoparticles (Au@MSN@Ag) nanospheres were prepared by layer-by-layer super-assembly strategy, and can be used as a novel matrix for the quantitative detection and enrichment of small biomolecules by LDI-MS. The sandwich-like nanospheres form a unique plasma resonant cavity that effectively absorbs the laser energy, while the homogeneous mesoporous structure of MSN can lock the analyte, which is essential for efficient LDI of small molecules. Compared to traditional matrices, Au@MSN@Ag shows the advantages of low background, wide application range, high sensitivity, super high salt and protein tolerance, and good stability. For example, the detection limit of glucose was as low as 5 fmol, and showed a good linear relationship in the range of 1−750 μg/mL. Au@MSN@Ag assisted LDI-MS allows the enrichment and detection of small molecules in traditional Chinese medicine (TCM) without derivatization and purification, classification of herbs using the accurate quantitative results oligosaccharides, and identification of gelatin by amino acid content. This research could help in designing more efficient nanostructure matrices and further explored the application of LDI-MS.

Keywords: matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), matrix, sandwich-like nanostructures, small biomolecules, traditional Chinese medicine (TCM)

References(60)

1

Stockwell, B. R. Exploring biology with small organic molecules. Nature 2004, 432, 846–854.

2

Scott, D. E.; Bayly, A. R.; Abell, C.; Skidmore, J. Small molecules, big targets: Drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discov. 2016, 15, 533–550.

3

Li, N.; Li, S. M.; Li, T.; Yang, H.; Zhang, Y. Y.; Zhao, Z. W. Co-incorporated mesoporous carbon material-assisted laser desorption/ionization ion source as an online interface of in vivo microdialysis coupled with mass spectrometry. Anal. Chem. 2020, 92, 5482–5491.

4

Schymanski, E. L.; Neumann, S. The critical assessment of small molecule identification (CASMI): Challenges and solutions. Metabolites 2013, 3, 517–538.

5

He, H. X.; Qin, L.; Zhang, Y. W.; Han, M. M.; Li, J. M.; Liu, Y. Q.; Qiu, K. D.; Dai, X. Y.; Li, Y. Y.; Zeng, M. M. et al. 3,4-Dimethoxycinnamic acid as a novel matrix for enhanced in situ detection and imaging of low-molecular-weight compounds in biological tissues by MALDI-MSI. Anal. Chem. 2019, 91, 2634–2643.

6

Xiao, H. M.; Liu, P.; Zheng, S. J.; Wang, X.; Ding, J.; Feng, Y. Q. Screening of amino acids in dried blood spots by stable isotope derivatization-liquid chromatography-electrospray ionization mass spectrometry. Chin. Chem. Lett. 2020, 31, 2423–2427.

7

Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153.

8

Huang, L.; Wan, J. J.; Wei, X.; Liu, Y.; Huang, J. Y.; Sun, X. M.; Zhang, R.; Gurav, D. D.; Vedarethinam, V.; Li, Y. et al. Plasmonic silver nanoshells for drug and metabolite detection. Nat. Commun. 2017, 8, 220.

9

Jiang, Y. M.; Sun, J.; Cui, Y.; Liu, H. H.; Zhang, X. Y.; Jiang, Y. R.; Nie, Z. X. Ti3C2 MXene as a novel substrate provides rapid differentiation and quantitation of glycan isomers with LDI-MS. Chem. Commun. 2019, 55, 10619–10622.

10

van Kampen, J. J. A.; Burgers, P. C.; de Groot, R.; Gruters, R. A.; Luider, T. M. Biomedical application of MALDI mass spectrometry for small-molecule analysis. Mass Spectrom. Rev. 2011, 30, 101–120.

11

Stopka, S. A.; Rong, C.; Korte, A. R.; Yadavilli, S.; Nazarian, J.; Razunguzwa, T. T.; Morris, N. J.; Vertes, A. Molecular imaging of biological samples on nanophotonic laser desorption ionization platforms. Angew. Chem., Int. Ed. 2016, 55, 4482–4486.

12

Shi, R.; Dai, X.; Li, W. F.; Lu, F.; Liu, Y.; Qu, H. H.; Li, H.; Chen, Q. Y.; Tian, H.; Wu, E. H. et al. Hydroxyl-group-dominated graphite dots reshape laser desorption/ionization mass spectrometry for small biomolecular analysis and imaging. ACS Nano 2017, 11, 9500–9513.

13

Fan, B. Y.; Zhou, H. Y.; Wang, Y. H.; Zhao, Z. Q.; Ren, S. Y.; Xu, L.; Wu, J.; Yan, H. Y.; Gao, Z. X. Surface siloxane-modified silica materials combined with metal-organic frameworks as novel MALDI matrixes for the detection of low-MW compounds. ACS Appl. Mater. Interfaces 2020, 12, 37793–37803.

14

Sun, X. M.; Huang, L.; Zhang, R.; Xu, W.; Huang, J. Y.; Gurav, D. D.; Vedarethinam, V.; Chen, R. P.; Lou, J. T.; Wang, Q. et al. Metabolic fingerprinting on a plasmonic gold chip for mass spectrometry based in vitro diagnostics. ACS Cent. Sci. 2018, 4, 223–229.

15

Wei, X.; Liu, Z. H.; Jin, X. L.; Huang, L.; Gurav, D. D.; Sun, X. M.; Liu, B. H.; Ye, J.; Qian, K. Plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry for detection of serum metabolites. Anal. Chim. Acta 2017, 950, 147–155.

16

Gao, M.; Zeng, J.; Liang, K.; Zhao, D. Y.; Kong, B. Mesoporous silica materials: Interfacial assembly of mesoporous silica-based optical heterostructures for sensing applications. Adv. Funct. Mater. 2020, 30, 1906950.

17

Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25–34.

18

Zhao, Q. Y.; Li, H.; Chen, H.; Wu, C.; Ei-Seedi, H.; Xu, X. B.; Du, M. High throughput analysis and quantitation of α-dicarbonyls in biofluid by plasmonic nanoshells enhanced laser desorption/ionization mass spectrometry. J. Hazard. Mater. 2021, 403, 123580.

19
Wang, S. H.; Niu, H. Y.; Zeng, T.; Zhang, X. L.; Cao, D.; Cai, Y. Q. Rapid determination of small molecule pollutants using metal-organic frameworks as adsorbent and matrix of MALDI-TOF-MS. Micropor. Mesopor. Mat. 2017, 239, 390‒395.https://doi.org/10.1016/j.micromeso.2016.10.032
DOI
20

Yang, B.; Zhou, S.; Zeng, J.; Zhang, L. P.; Zhang, R. H.; Liang, K.; Xie, L.; Shao, B.; Song, S. L.; Huang, G. et al. Super-assembled core-shell mesoporous silica-metal-phenolic network nanoparticles for combinatorial photothermal therapy and chemotherapy. Nano Res. 2020, 13, 1013–1019.

21

Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phy. Sci. 1973, 241, 20–22.

22

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923–932.

23

Xu, G. J.; Liu, S. J.; Peng, J. X.; Lv, W. P.; Wu, R. A. Facile synthesis of gold@graphitized mesoporous silica nanocomposite and its surface-assisted laser desorption/ionization for time-of-flight mass spectroscopy. ACS Appl. Mater. Interfaces 2015, 7, 2032–2038.

24

Jiang, Z. J.; Liu, C. Y. Seed-mediated growth technique for the preparation of a silver nanoshell on a silica sphere. J. Phys. Chem. B 2003, 107, 12411–12415.

25

Li, C. R.; Mei, J.; Li, S. W.; Lu, N. P.; Wang, L. N.; Chen, B. Y.; Dong, W. J. One-pot synthesis of Ag@SiO2@Ag sandwich nanostructures. Nanotechnology 2010, 21, 245602.

26

Cai, Y. G.; Piao, X. Q.; Gao, W.; Zhang, Z. J.; Nie, E.; Sun, Z. Large-scale and facile synthesis of silver nanoparticles via a microwave method for a conductive pen. RSC Adv. 2017, 7, 34041–34048.

27

Liu, J.; Yang, T. Y.; Wang, D. W.; Lu, G. Q.; Zhao, D. Y.; Qiao, S. Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres. Nat. Commun. 2013, 4, 2798.

28

Guo, Z.; Ganawi, A. A. A.; Liu, Q.; He, L. Nanomaterials in mass spectrometry ionization and prospects for biological application. Anal. Bioanal. Chem. 2006, 384, 584–592.

29

Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.

30

Northen, T. R.; Yanes, O.; Northen, M. T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S. L.; Nordström, A.; Siuzdak, G. Clathrate nanostructures for mass spectrometry. Nature 2007, 449, 1033–1036.

31

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core-shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

32

Gan, J. R.; Wei, X.; Li, Y. X.; Wu, J.; Qian, K.; Liu, B. H. Designer SiO2@Au nanoshells towards sensitive and selective detection of small molecules in laser desorption ionization mass spectrometry. Nanomed.: Nanotechnol., Biol. Med. 2015, 11, 1715–1723.

33

Näsholm, T.; Ekblad, A.; Nordin, A.; Giesler, R.; Högberg, M.; Högberg, P. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914–916.

34

Stone, T. W. Amino acids as neurotransmitters of corticofugal neurones in the rat: A comparison of glutamate and aspartate. Br. J. Pharmacol. 1979, 67, 545–551.

35

Jackson, A. U.; Shum, T.; Sokol, E.; Dill, A.; Cooks, R. G. Enhanced detection of olefins using ambient ionization mass spectrometry: Ag+ adducts of biologically relevant alkenes. Anal. Bioanal. Chem. 2011, 399, 367–376.

36

McLuckey, S. A.; Schoen, A. E.; Cooks, R. G. Silver ion affinities of alcohols as ordered by mass spectrometry/mass spectrometry. J. Am. Chem. Soc. 1982, 104, 848–850.

37

Monroe, E. B.; Koszczuk, B. A.; Losh, J. L.; Jurchen, J. C.; Sweedler, J. V. Measuring salty samples without adducts with MALDI MS. Int. J. Mass Spectrom. 2007, 260, 237–242.

38

Ropartz, D.; Bodet, P. E.; Przybylski, C.; Gonnet, F.; Daniel, R.; Fer, M.; Helbert, W.; Bertrand, D.; Rogniaux, H. Performance evaluation on a wide set of matrix-assisted laser desorption ionization matrices for the detection of oligosaccharides in a high-throughput mass spectrometric screening of carbohydrate depolymerizing enzymes. Rapid Commun. Mass Spectrom. 2011, 25, 2059–2070.

39

Wan, D.; Gao, M. X.; Wang, Y. H.; Zhang, P.; Zhang, X. M. A rapid and simple separation and direct detection of glutathione by gold nanoparticles and graphene-based MALDI-TOF-MS. J. Sep. Sci. 2013, 36, 629–635.

40
Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia, 2020 Edition; Chinese Medicine Science and Technology Press: Beijing, 2020.
41

Wu, F. Q.; Zhang, Y.; Liu, W. J.; Zhu, N. N.; Chen, J. B.; Sun, Z. R. Comparison of torrefied and lyophilized Dendrobii Officinalis Caulis (Tiepishihu) by Fourier transform infrared spectroscopy and two-dimensional correlation spectroscopy. J. Mol. Struct. 2020, 1204, 127554.

42

Zheng, X. Q.; Jin, C. S.; Zhang, Y. Z.; Liu, J. L.; Yu, N. J.; Ou, J. M. Content determination of 3 saccharides in 3 kinds of medicinal dendrobii caulis by HPLC-CAD. China Pharm. 2020, 31, 1185–1189.

43

Li, L. F.; Yao, H.; Li, X. J.; Zhang, Q. W.; Wu, X. Y.; Wong, T.; Zheng, H. M.; Fung, H.; Yang, B. X.; Ma, D. et al. Destiny of Dendrobium officinale polysaccharide after oral administration: Indigestible and nonabsorbing, ends in modulating gut microbiota. J. Agric. Food Chem. 2019, 67, 5968–5977.

44

Hanani, Z. A. N.; Roos, Y. H.; Kerry, J. P. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014, 71, 94–102.

45

Aykın-Dinçer, E.; Koç, A.; Erbaş, M. Extraction and physicochemical characterization of broiler (Gallus gallus domesticus) skin gelatin compared to commercial bovine gelatin. Poultry Sci. 2017, 96, 4124–4131.

46

Cheng, X. L.; Wei, F.; Xiao, X. Y.; Zhao, Y. Y.; Shi, Y.; Liu, W.; Zhang, P.; Ma, S. C.; Tian, S. S.; Lin, R. C. Identification of five gelatins by ultra performance liquid chromatography/time-of-flight mass spectrometry (UPLC/Q-TOF-MS) using principal component analysis. J. Pharm. Biomed. Anal. 2012, 62, 191–195.

47

Wang, D. L.; Ru, W. W.; Xu, Y. P.; Zhang, J. L.; He, X. X.; Fan, G. H.; Mao, B. B.; Zhou, X. S.; Qin, Y. F. Chemical constituents and bioactivities of Colla corii asini. Drug Discov. Ther. 2014, 8, 201–207.

48

Azilawati, M. I.; Hashim, D. M.; Jamilah, B.; Amin, I. Validation of a reverse-phase high-performance liquid chromatography method for the determination of amino acids in gelatins by application of 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. J. Chromatogr. A 2014, 1353, 49–56.

49

Jamilah, B.; Harvinder, K. G. Properties of gelatins from skins of fish—black tilapia (Oreochromis mossambicus) and red tilapia (Oreochromis nilotica). Food Chem. 2002, 77, 81–84.

50

Kim, K.; Yoon, J. K. Raman scattering of 4-aminobenzenethiol sandwiched between Ag/Au nanoparticle and macroscopically smooth Au substrate. J. Phys. Chem. B 2005, 109, 20731–20736.

51

Xu, S. P.; Zhao, B.; Xu, W. Q.; Fan, Y. G. Preparation of Au-Ag coreshell nanoparticles and application of bimetallic sandwich in surface-enhanced Raman scattering (SERS). Colloids Surf. A: Physicochem. Eng. Aspects 2005, 257-258, 313–317.

52

Wang, M. Y.; Ye, M. D.; Iocozzia, J.; Lin, C. J.; Lin, Z. Q. Plasmon-mediated solar energy conversion via photocatalysis in noble metal/semiconductor composites. Adv. Sci. 2016, 3, 1600024.

53

Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632–635.

54

Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-induced hot carriers in metallic nanoparticles. ACS Nano 2014, 8, 7630–7638.

55

de Arquer, F. P. G.; Mihi, A.; Kufer, D.; Konstantatos, G. Photoelectric energy conversion of plasmon-generated hot carriers in metal-insulator-semiconductor structures. ACS Nano 2013, 7, 3581–3588.

56

Lee, J.; Mubeen, S.; Ji, X. L.; Stucky, G. D.; Moskovits, M. Plasmonic photoanodes for solar water splitting with visible light. Nano Lett. 2012, 12, 5014–5019.

57

Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247–251.

58

Enustun, B. V.; Turkevich, J. Coagulation of colloidal gold. J. Am. Chem. Soc. 1963, 85, 3317–3328.

59

Deng, Z. W.; Chen, M.; Wu, L. M. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. J. Phys. Chem. C 2007, 111, 11692–11698.

60

Piraud, M.; Vianey-Saban, C.; Petritis, K.; Elfakir, C.; Steghens, J. P.; Morla, A.; Bouchu, D. ESI-MS/MS analysis of underivatised amino acids: A new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun. Mass Spectrom. 2003, 17, 1297–1311.

Publication history
Copyright
Acknowledgements

Publication history

Received: 03 May 2021
Revised: 29 June 2021
Accepted: 12 July 2021
Published: 12 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2019YFC1604600, 2017YFA0206901, 2019YFC1604601, 2017YFA0206900, and 2018YFC1602301), the National Natural Science Foundation of China (Nos. 21705027, 21974029 51808328, 61903235, 42007218, and 51703109), the Major Scientific and Technological Innovation Project of Shandong (Nos. 2018CXGC1406, 2019JZZY010457 and 2019JZZY020309). The Natural Science Foundation of Shanghai (18ZR1404700), and Construction Project of Shanghai Key Laboratory of Molecular Imaging (18DZ2260400), Shanghai Municipal Education Commission (Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS, 2018-2020). The ability establishment of sustainable use for valuable Chinese medicine resources (2060302). The natural Science Foundation of Shandong Province, China (ZR2020QE228).

Return