Journal Home > Volume 15 , Issue 3

Transition metal phosphides (TMPs) are promising candidates for sodium ion battery anode materials because of their high theoretical capacity and earth abundance. Similar to many other P-based conversion type electrodes, TMPs suffer from large volumetric expansion upon cycling and thus quick performance fading. Moreover, TMPs are easily oxidized in air, resulting in a surface phosphate layer that not only decreases the electric conductivity but also hinders the Na ion transport. In this work, we present a general electrode design that overcomes these two major challenges facing TMPs. Using metal hydroxide and glucose as precursors, we show that the metal hydroxide can be converted into phosphide whereas the glucose simultaneously decomposes and forms carbon shell on the phosphide particles under a plasma ambient. Ni2P@C core shell structures as a proof-of-concept are designed and synthesized. The in situ formed carbon shell protects the Ni2P from oxidation. Moreover, the high-energy plasma introduces porosity and vacancies to the Ni2P and more importantly produces phosphorus-rich nickel phosphides (NiPx). As a result, the Ni2P@C electrodes achieve high sodium capacity (693 mAh·g−1 after 50 cycles at 100 mA·g−1) and excellent cyclability (steady capacity maintained for at least 1, 500 cycles). Our work provides a general strategy for enhancing the sodium storage performance of TMPs, and in general many other conversion type electrode materials that are unstable in air and suffer from large volumetric changes upon cycling.


menu
Abstract
Full text
Outline
About this article

Conversion of hydroxide into carbon-coated phosphide using plasma for sodium ion batteries

Show Author's information Jin Liang1Guoyin Zhu3Yizhou Zhang3,4( )Hanfeng Liang2( )Wei Huang1,4( )
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China
State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China

Abstract

Transition metal phosphides (TMPs) are promising candidates for sodium ion battery anode materials because of their high theoretical capacity and earth abundance. Similar to many other P-based conversion type electrodes, TMPs suffer from large volumetric expansion upon cycling and thus quick performance fading. Moreover, TMPs are easily oxidized in air, resulting in a surface phosphate layer that not only decreases the electric conductivity but also hinders the Na ion transport. In this work, we present a general electrode design that overcomes these two major challenges facing TMPs. Using metal hydroxide and glucose as precursors, we show that the metal hydroxide can be converted into phosphide whereas the glucose simultaneously decomposes and forms carbon shell on the phosphide particles under a plasma ambient. Ni2P@C core shell structures as a proof-of-concept are designed and synthesized. The in situ formed carbon shell protects the Ni2P from oxidation. Moreover, the high-energy plasma introduces porosity and vacancies to the Ni2P and more importantly produces phosphorus-rich nickel phosphides (NiPx). As a result, the Ni2P@C electrodes achieve high sodium capacity (693 mAh·g−1 after 50 cycles at 100 mA·g−1) and excellent cyclability (steady capacity maintained for at least 1, 500 cycles). Our work provides a general strategy for enhancing the sodium storage performance of TMPs, and in general many other conversion type electrode materials that are unstable in air and suffer from large volumetric changes upon cycling.

Keywords: sodium ion batteries, porous anodes, Ni2P , plasma conversion, phosphorus-rich

References(43)

1

Lu, L. G.; Han, X. B.; Li, J. Q.; Hua, J. F.; Ouyang, M. G. A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Sources 2013, 226, 272–288.

2

Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

3

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

4

Chen, K. F.; Yin, S.; Xue, D. F. Active La-Nb-O compounds for fast lithium-ion energy storage. Tungsten 2019, 1, 287–296.

5

Liu, X. Q.; Li, L. P.; Li, G. S. Partial surface phase transformation of Li3VO4 that enables superior rate performance and fast lithium-ion storage. Tungsten 2019, 1, 276–286.

6

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

7

Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682.

8

Su, X.; Wu, Q. L.; Li, J. C.; Xiao, X. C.; Lott, A.; Lu, W. Q.; Sheldon, B. W.; Wu, J. Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 2014, 4, 1300882.

9

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

10

Yang, F. H.; Gao, H.; Chen, J.; Guo, Z. P. Phosphorus-based materials as the anode for sodium-ion batteries. Small Methods 2017, 1, 1700216.

11

Song, J. X.; Yu, Z. X.; Gordin, M. L.; Hu, S.; Yi, R.; Tang, D. H.; Walter, T.; Regula, M.; Choi, D.; Li, X. L. et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries. Nano Lett. 2014, 14, 6329–6335.

12

Sun, M.; Liu, H. J.; Qu, J. H.; Li, J. H. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087.

13

Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 2014, 20, 11980–11992.

14

Liang, H. F.; Xia, C.; Jiang, Q.; Gandi, A. N.; Schwingenschlögl, U.; Alshareef, H. N. Low temperature synthesis of ternary metal phosphides using plasma for asymmetric supercapacitors. Nano Energy 2017, 35, 331–340.

15

Zhou, K.; Zhou, W. J.; Yang, L. J.; Lu, J.; Cheng, S.; Mai, W.; Tang, Z. H.; Li, L. G.; Chen, S. W. Ultrahigh-performance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach. Adv. Funct. Mater. 2015, 25, 7530–7538.

16

Feng, Y. Y.; Zhang, H. J.; Mu, Y. P.; Li, W. X.; Sun, J. L.; Wu, K.; Wang, Y. Monodisperse sandwich-like coupled quasi-graphene sheets encapsulating Ni2P nanoparticles for enhanced lithium-ion batteries. Chem. Eur. J. 2015, 21, 9229–9235.

17

Bai, Y. J.; Zhang, H. J.; Fang, L.; Liu, L.; Qiu, H. J.; Wang, Y. Novel peapod array of Ni2P@ graphitized carbon fiber composites growing on Ti substrate: A superior material for Li-ion batteries and the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 5434–5441.

18

Lu, Y.; Tu, J. P.; Xiong, Q. Q.; Qiao, Y. Q.; Zhang, J.; Gu, C. D.; Wang, X. L.; Mao, S. X. Carbon-decorated single-crystalline Ni2P nanotubes derived from Ni nanowire templates: A high-performance material for Li-ion batteries. Chem. Eur. J. 2012, 18, 6031–6038.

19

Lu, Y.; Wang, X. L.; Mai, Y. J.; Xiang, J. Y.; Zhang, H.; Li, L.; Gu, C. D.; Tu, J. P.; Mao, S. X. Ni2P/graphene sheets as anode materials with enhanced electrochemical properties versus lithium. J. Phys. Chem. C 2012, 116, 22217–22225.

20

Bai, Y. J.; Zhang, H. J.; Li, X.; Liu, L.; Xu, H. T.; Qiu, H. J.; Wang, Y. Novel peapod-like Ni2P nanoparticles with improved electrochemical properties for hydrogen evolution and lithium storage. Nanoscale 2015, 7, 1446–1453.

21

Xia, Q. B.; Li, W. J.; Miao, Z. C.; Chou, S. L.; Liu, H. K. Phosphorus and phosphide nanomaterials for sodium-ion batteries. Nano Res. 2017, 10, 4055–4081.

22

Fan, M. P.; Chen, Y.; Xie, Y. H.; Yang, T. Z.; Shen, X. W.; Xu, N.; Yu, H. Y.; Yan, C. L. Half-cell and full-cell applications of highly stable and binder-free sodium ion batteries based on Cu3P nanowire anodes. Adv. Funct. Mater. 2016, 26, 5019–5027.

23

Wang, X. J.; Chen, K.; Wang, G.; Liu, X. J.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616.

24

Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

25

Zhou, H. J.; Zheng, M. B.; Pang, H. Synthesis of hollow amorphous cobalt phosphide-cobalt oxide composite with interconnected pores for oxygen evolution reaction. Chem. Eng. J. 2021, 416, 127884.

26

Zhang, G. X.; Li, Y. L.; Xiao, X.; Shan, Y.; Bai, Y.; Xue, H. -G.; Pang, H.; Tian, Z. Q.; Xu, Q. In situ anchoring polymetallic phosphide nanoparticles within porous prussian blue analogue nanocages for boosting oxygen evolution catalysis. Nano Lett. 2021, 21, 3016–3025.

27

Liang, H. F.; Alshareef, H. N. A plasma-assisted route to the rapid preparation of transition-metal phosphides for energy conversion and storage. Small Methods 2017, 1, 1700111.

28

Xia, C.; Zhang, F.; Liang, H. F.; Alshareef, H. N. Layered SnS sodium ion battery anodes synthesized near room temperature. Nano Res. 2017, 10, 4368–4377.

29

Liang, H. F.; Gandi, A. N.; Anjum, D. H.; Wang, X. B.; Schwingenschlögl, U.; Alshareef, H. N. Plasma-assisted synthesis of NiCoP for efficient overall water splitting. Nano Lett. 2016, 16, 7718–7725.

30

Liang, H. F.; Gandi, A. N.; Xia, C.; Hedhili, M. N.; Anjum, D. H.; Schwingenschlögl, U.; Alshareef, H. N. Amorphous NiFe-OH/NiFeP electrocatalyst fabricated at low temperature for water oxidation applications. ACS Energy Lett. 2017, 2, 1035–1042.

31

Zhang, Y. Q.; Rawat, R. S.; Fan, H. J. Plasma for rapid conversion reactions and surface modification of electrode materials. Small Methods 2017, 1, 1700164.

32

Carenco, S.; Portehault, D.; Boissiè, C.; Mézailles, N.; Sanchez, C. Nanoscaled metal borides and phosphides: Recent developments and perspectives. Chem. Rev. 2013, 113, 7981–8065.

33

You, B.; Jiang, N.; Sheng, M. L.; Bhushan, M. W.; Sun, Y. J. Hierarchically porous urchin-like Ni2P superstructures supported on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. ACS Catal. 2016, 6, 714–721.

34

Matthews, M. J.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Endo, M. Origin of dispersive effects of the Raman D band in carbon materials. Phys. Rev. B 1999, 59, R6585–R6588.

35

Panneerselvam, A.; Malik, M. A.; Afzaal, M.; O'Brien, P.; Helliwell, M. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. J. Am. Chem. Soc. 2008, 130, 2420–2421.

36

Singh, K. P.; Bae, E. J.; Yu, J. -S. Fe–P: A new class of electroactive catalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 3165–3168.

37

Motojima, S.; Haguri, K.; Takahashi, Y.; Sugiyama, K. Chemical vapor deposition of nickel phosphide Ni2P. J. Less-Common Met. 1979, 64, 101–106.

38

Xu, J. T.; Wang, M.; Wickramaratne, N. P.; Jaroniec, M.; Dou, S. X.; Dai, L. M. High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 2015, 27, 2042–2048.

39

Xu, D. F.; Chen, C. J.; Xie, J.; Zhang, B.; Miao, L.; Cai, J.; Huang, Y. H.; Zhang, L. N. A Hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 2016, 6, 1501929.

40

Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

41

Lindström, H.; Södergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. -E. Li+ ion insertion in TiO2 (anatase). 2. Voltammetry on nanoporous films. J. Phys. Chem. B 1997, 101, 7717–7722.

42

Dong, Y. F.; Wang, B. L.; Zhao, K. N.; Yu, Y. H.; Wang, X. D.; Mai, L. Q.; Jin, S. Air-stable porous Fe2N encapsulated in carbon microboxes with high volumetric lithium storage capacity and a long cycle life. Nano Lett. 2017, 17, 5740–5746.

43

Liu, T. C.; Pell, W. G.; Conway, B. E.; Roberson, S. L. Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide. J. Electrochem. Soc. 1998, 145, 1882–1888.

Publication history
Copyright
Acknowledgements

Publication history

Received: 17 June 2021
Revised: 07 July 2021
Accepted: 10 July 2021
Published: 12 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21805136 and 22001081), the Startup Foundation for Introducing Talent of NUIST (Nos. 1521622101002 and 1521622101003), and the open research fund of State Key Laboratory of Organic Electronics and Information Displays.

Return