Journal Home > Volume 16 , Issue 4

Cesium lead iodide (CsPbI3) is a promising photo-absorber for perovskite photovoltaics due to its high thermal stability and relatively small bandgap. However, there are many defects in solution processed polycrystalline CsPbI3 films especially at the grain boundaries (GBs), which limit the power conversion efficiency (PCE) of CsPbI3 solar cells. In this work, we introduced CsPbBr3 quantum dots (QDs) on top of the CsPbI3 film to passivate the defects. As CsPbBr3 QDs have a small size and a similar crystal structure as the CsPbI3, they are excellent modifiers to fill in the GBs and heal the defects. Moreover, we find there is an anion exchange reaction between the CsPbBr3 QDs and CsPbI3 films, which is evidenced by photoluminescence spectra and grazing incidence X-ray diffraction patterns. The QDs treated films show enhanced carrier lifetime and reduced defect density. Additionally, the ligands on CsPbBr3 QDs increase the hydrophobicity of the films. As a result, the QDs treated CsPbI3 solar cells prepared at high temperature obtain PCEs exceeding 16% with high stability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Healing the defects in CsPbI3 solar cells by CsPbBr3 quantum dots

Show Author's information Yanyan LiLinrui DuanZhuang ZhangHuanhuan WangTianyang ChenJingshan Luo( )
Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Research Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300350, China

Abstract

Cesium lead iodide (CsPbI3) is a promising photo-absorber for perovskite photovoltaics due to its high thermal stability and relatively small bandgap. However, there are many defects in solution processed polycrystalline CsPbI3 films especially at the grain boundaries (GBs), which limit the power conversion efficiency (PCE) of CsPbI3 solar cells. In this work, we introduced CsPbBr3 quantum dots (QDs) on top of the CsPbI3 film to passivate the defects. As CsPbBr3 QDs have a small size and a similar crystal structure as the CsPbI3, they are excellent modifiers to fill in the GBs and heal the defects. Moreover, we find there is an anion exchange reaction between the CsPbBr3 QDs and CsPbI3 films, which is evidenced by photoluminescence spectra and grazing incidence X-ray diffraction patterns. The QDs treated films show enhanced carrier lifetime and reduced defect density. Additionally, the ligands on CsPbBr3 QDs increase the hydrophobicity of the films. As a result, the QDs treated CsPbI3 solar cells prepared at high temperature obtain PCEs exceeding 16% with high stability.

Keywords: CsPbBr3 quantum dots, defect passivation, CsPbI3 solar cell

References(52)

[1]

Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G. C.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407.

[2]

Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A.-A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.

[3]

Levchuk, I.; Osvet, A.; Tang, X. F.; Brandl, M.; Perea, J. D.; Hoegl, F.; Matt, G. J.; Hock, R.; Batentschuk, M.; Brabec, C. J. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett. 2017, 17, 2765–2770.

[4]

Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Correa-Baena, J. P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A. et al. Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency. Energy Environ. Sci. 2016, 9, 1989–1997.

[5]

Lee, J.-W.; Kim, D.-H.; Kim, H.-S.; Seo, S.-W.; Cho, S. M.; Park, N.-G. Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell. Adv. Energy Mater. 2015, 5, 1501310.

[6]
Wang, Y.; Liu, X. M.; Zhang, T. Y.; Wang, X. T.; Kan, M.; Shi, J. L.; Zhao, Y. X. The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: Additive or dopant? Angew. Chem., Int. Ed. 2019, 58, 16691–16696.
[7]

Zhang, J. H.; Wang, Z. W.; Mishra, A.; Yu, M. L.; Shasti, M.; Tress, W.; Kubicki, D. J.; Avalos, C. E.; Lu, H. Z.; Liu, Y. H. et al. Intermediate phase enhances inorganic perovskite and metal oxide interface for efficient photovoltaics. Joule 2020, 4, 222–234.

[8]

Han, T. H.; Tan, S.; Xue, J. J.; Meng, L.; Lee, J. W.; Yang, Y. Interface and defect engineering for metal halide perovskite optoelectronic devices. Adv. Mater. 2019, 31, 1803515.

[9]

Tan, H. R.; Jain, A.; Voznyy, O.; Lan, X. Z.; de Arquer, F. P. G.; Fan, J. Z.; Quintero-Bermudez, R.; Yuan, M. J.; Zhang, B.; Zhao, Y. C. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 2017, 355, 722–726.

[10]

Yoo, J. J.; Seo, G.; Chua, M. R.; Park, T. G.; Lu, Y. L.; Rotermund, F.; Kim, Y.-K.; Moon, C. S.; Jeon, N. J.; Correa-Baena, J.-P. et al. Efficient perovskite solar cells via improved carrier management. Nature 2021, 590, 587–593.

[11]

Burwig, T.; Fränzel, W.; Pistor, P. Crystal phases and thermal stability of co-evaporated CsPbX3 (X = I, Br) thin films. J. Phys. Chem. Lett. 2018, 9, 4808–4813.

[12]

Huang, J. S.; Yuan, Y. B.; Shao, Y. C.; Yan, Y. F. Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat. Rev. Mater. 2017, 2, 17042.

[13]

Liu, W.; Liu, N. J.; Ji, S. L.; Hua, H. F.; Ma, Y. H.; Hu, R. Y.; Zhang, J.; Chu, L.; Li, X. A.; Huang, W. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nano-Micro Lett. 2020, 12, 119.

[14]

Yin, W.-J.; Chen, H. Y.; Shi, T. T.; Wei, S.-H.; Yan, Y. F. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Adv. Electron. Mater. 2015, 1, 1500044.

[15]

Long, R.; Liu, J.; Prezhdo, O. V. Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation. J. Am. Chem. Soc. 2016, 138, 3884–3890.

[16]

de Quilettes, D. W.; Vorpahl, S. M.; Stranks, S. D.; Nagaoka, H.; Eperon, G. E.; Ziffer, M. E.; Snaith, H. J.; Ginger, D. S. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science 2015, 348, 683–686.

[17]

Duan, H.-S.; Zhou, H. P.; Chen, Q.; Sun, P. Y.; Luo, S.; Song, T.-B.; Bob, B.; Yang, Y. The identification and characterization of defect states in hybrid organic–inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 2015, 17, 112–116.

[18]

Ham, S.; Choi, Y. J.; Lee, J.-W.; Park, N.-G.; Kim, D. Impact of excess CH3NH3I on free carrier dynamics in high-performance nonstoichiometric perovskites. J. Phys. Chem. C 2017, 121, 3143–3148.

[19]

Seok, S. I.; Grätzel, M.; Park, N.-G. Methodologies toward highly efficient perovskite solar cells. Small 2018, 14, 1704177.

[20]

Wen, X. M.; Feng, Y.; Huang, S. J.; Huang, F. Z.; Cheng, Y.-B.; Green, M.; Ho-Baillie, A. Defect trapping states and charge carrier recombination in organic–inorganic halide perovskites. J. Mater. Chem. C 2016, 4, 793–800.

[21]

Shao, Y. C.; Fang, Y. J.; Li, T.; Wang, Q.; Dong, Q. F.; Deng, Y. H.; Yuan, Y. B.; Wei, H. T.; Wang, M. Y.; Gruverman, A. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 2016, 9, 1752–1759.

[22]

Wang, Z.; Pradhan, A.; Kamarudin, M. A.; Pandey, M.; Pandey, S. S.; Zhang, P. T.; Ng, C. H.; Tripathi, A. S. M.; Ma, T. L.; Hayase, S. Passivation of grain boundary by squaraine zwitterions for defect passivation and efficient perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 10012–10020.

[23]

Ahn, N.; Kwak, K.; Jang, M. S.; Yoon, H.; Lee, B. Y.; Lee, J.-K.; Pikhitsa, P. V.; Byun, J.; Choi, M. Trapped charge-driven degradation of perovskite solar cells. Nat. Commun. 2016, 7, 13422.

[24]

Kim, H.-B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 2014, 6, 6679–6683.

[25]

Xiao, M.; Zhao, L.; Geng, M.; Li, Y. Y.; Dong, B. H.; Xu, Z. X.; Wan, L.; Li, W. L.; Wang, S. M. Selection of an anti-solvent for efficient and stable cesium-containing triple cation planar perovskite solar cells. Nanoscale 2018, 10, 12141–12148.

[26]

Paek, S.; Schouwink, P.; Athanasopoulou, E. N.; Cho, K. T.; Grancini, G.; Lee, Y.; Zhang, Y.; Stellacci, F.; Nazeeruddin, M. K.; Gao, P. From nano- to micrometer scale: The role of antisolvent treatment on high performance perovskite solar cells. Chem. Mater. 2017, 29, 3490–3498.

[27]

Xiao, M. D.; Huang, F. Z.; Huang, W. C.; Dkhissi, Y.; Zhu, Y.; Etheridge, J.; Gray-Weale, A.; Bach, U.; Cheng, Y.-B.; Spiccia, L. A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem., Int. Ed. 2014, 53, 9898–9903.

[28]

Wang, P. Y.; Zhang, X. W.; Zhou, Y. Q.; Jiang, Q.; Ye, Q. F.; Chu, Z. M.; Li, X. X.; Yang, X. L.; Yin, Z. G.; You, J. B. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat. Commun. 2018, 9, 2225.

[29]

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

[30]

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

[31]

Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

[32]

Liu, Y. H.; Dong, B. T.; Hagfeldt, A.; Luo, J. S.; Graetzel, M. Chemically tailored molecular surface modifiers for efficient and stable perovskite photovoltaics. SmartMat 2021, 2, 33–37.

[33]

Ahn, N.; Son, D.-Y.; Jang, I.-H.; Kang, S. M.; Choi, M.; Park, N.-G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

[34]

Wu, Z. F.; Raga, S. R.; Juarez-Perez, E. J.; Yao, X. Y.; Jiang, Y.; Ono, L. K.; Ning, Z. J.; Tian, H.; Qi, Y. B. Improved efficiency and stability of perovskite solar cells induced by CO functionalized hydrophobic ammonium-based additives. Adv. Mater. 2018, 30, 1703670.

[35]

Wu, Y.-H.; Shi, X.-Q.; Ding, X.-H.; Ren, Y.-K.; Hayat, T.; Alsaedi, A.; Ding, Y.; Xu, P.; Dai, S.-Y. Incorporating 4-tert-butylpyridine in an antisolvent: A facile approach to obtain highly efficient and stable perovskite solar cells. ACS Appl. Mater. Interfaces 2018, 10, 3602–3608.

[36]

Feng, J. S.; Zhu, X. J.; Yang, Z.; Zhang, X. R.; Niu, J. Z.; Wang, Z. Y.; Zuo, S. N.; Priya, S.; Liu, S. F.; Yang, D. Record efficiency stable flexible perovskite solar cell using effective additive assistant strategy. Adv. Mater. 2018, 30, 1801418.

[37]

Hill, R. B. M.; Turren-Cruz, S.-H.; Pulvirenti, F.; Tress, W. R.; Wieghold, S.; Sun, S. J.; Nienhaus, L.; Bawendi, M.; Buonassisi, T.; Barlow, S. et al. Phosphonic acid modification of the electron selective contact: Interfacial effects in perovskite solar cells. ACS Appl. Energy Mater. 2019, 2, 2402–2408.

[38]

Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A. et al. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354, 206–209.

[39]

Wei, J.; Li, H.; Zhao, Y. C.; Zhou, W. K.; Fu, R.; Leprince-Wang, Y.; Yu, D. P.; Zhao, Q. Suppressed hysteresis and improved stability in perovskite solar cells with conductive organic network. Nano Energy 2016, 26, 139–147.

[40]

Ghosh, D.; Chaudhary, D. K.; Ali, M. Y.; Chauhan, K. K.; Prodhan, S.; Bhattacharya, S.; Ghosh, B.; Datta, P. K.; Ray, S. C.; Bhattacharyya, S. All-inorganic quantum dot assisted enhanced charge extraction across the interfaces of bulk organo-halide perovskites for efficient and stable pin-hole free perovskite solar cells. Chem. Sci. 2019, 10, 9530–9541.

[41]

Ma, Y. H.; Zhang, H. Y.; Zhang, Y. W.; Hu, R. Y.; Jiang, M.; Zhang, R.; Lv, H.; Tian, J. J.; Chu, L.; Zhang, J. et al. Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Interfaces 2019, 11, 3044–3052.

[42]

Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Grotevent, M. J.; Kovalenko, M. V. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640.

[43]

Hsiao, K.-C.; Jao, M.-H.; Li, B.-T.; Lin, T.-H.; Liao, S. H.-C.; Wu, M.-C.; Su, W.-F. Enhancing efficiency and stability of hot casting p–i–n perovskite solar cell via dipolar ion passivation. ACS Appl. Energy Mater. 2019, 2, 4821–4832.

[44]

Chen, W. J.; Chen, H. Y.; Xu, G. Y.; Xue, R. M.; Wang, S. H.; Li, Y. W.; Li, Y. F. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule 2019, 3, 191–204.

[45]

Pei, Y. H.; Liu, Y.; Li, F. M.; Bai, S.; Jian, X.; Liu, M. Z. Unveiling property of hydrolysis-derived DMAPbI3 for perovskite devices: Composition engineering, defect mitigation, and stability optimization. iScience 2019, 15, 165–172.

[46]

Wang, P. Y.; Li, R. J.; Chen, B. B.; Hou, F. H.; Zhang, J.; Zhao, Y.; Zhang, X. D. Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23%. Adv. Mater. 2020, 32, 1905766.

[47]

Lee, J.-W.; Bae, S.-H.; De Marco, N.; Hsieh, Y.-T.; Dai, Z. H.; Yang, Y. The role of grain boundaries in perovskite solar cells. Mater. Today Energy 2018, 7, 149–160.

[48]

Dar, M. I.; Franckevičius, M.; Arora, N.; Redeckas, K.; Vengris, M.; Gulbinas, V.; Zakeeruddin, S. M.; Grätzel, M. High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy. Chem. Phys. Lett. 2017, 683, 211–215.

[49]

Peng, J.; Khan, J. I.; Liu, W. Z.; Ugur, E.; Duong, T.; Wu, Y. L.; Shen, H. P.; Wang, K.; Dang, H.; Aydin, E. et al. A universal double-side passivation for high open-circuit voltage in perovskite solar cells: Role of carbonyl groups in poly(methyl methacrylate). Adv. Energy Mater. 2018, 8, 1801208.

[50]

Jung, M.; Shin, T. J.; Seo, J.; Kim, G.; Seok, S. I. Structural features and their functions in surfactant-armoured methylammonium lead iodide perovskites for highly efficient and stable solar cells. Energy Environ. Sci. 2018, 11, 2188–2197.

[51]

Duan, L. R.; Wang, Z. W.; Li, Y. Y.; Tan, L. G.; Zhang, Z.; Wang, H. H.; Yi, C. Y.; Hagfeldt, A.; Luo, J. S. Hydrophobic organic ammonium halide modification toward highly efficient and stable CsPbI2.25Br0.75 solar cell. Solar RRL 2021, 5, 2100178.

[52]
Ye, J. Z.; Byranvand, M. M.; Martínez, C. O.; Hoye, R. L. Z.; Saliba, M.; Polavarapu, L. Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem., Int. Ed., in press, DOI: 10.1002/anie.202102360.
File
12274_2021_3737_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2021
Revised: 06 July 2021
Accepted: 08 July 2021
Published: 24 July 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2018YFB1502003 and 2019YFE0123400), the Tianjin Distinguished Young Scholars Fund (No. 20JCJQJC00260), and the Chinese Thousand Talents Program for Young Professionals.

Return