Journal Home > Volume 15 , Issue 3

Piezochromic luminescent materials have shown great potential in advanced optoelectronic applications. However, most of luminescent materials usually undergo emission quenching under external stimuli. Herein, we demonstrate for the first time that the photoluminescence of carbon dots (CDs) confined within sodium hydroxide can be enhanced when high pressure is applied. They exhibit a 1.6-fold fluorescence enhancement compared with pristine CDs. Importantly, the enhanced fluorescence intensity can be retained after the release of pressure to ambient conditions. A combination of experimental analysis and theoretical simulations indicates that such an enhanced emission is mainly attributed to the strong confinement resulting from the sodium hydroxide matrix, which can separate the CDs spatially and restrict the nonradiative pathway. These results provide a rational strategy for manipulating the optical properties of CDs with enhanced and retainable photoluminescence (PL) performance, thus opening up a venue for designing luminescent CDs-based materials.


menu
Abstract
Full text
Outline
About this article

Pressure-induced photoluminescence enhancement and ambient retention in confined carbon dots

Show Author's information Qing Lou1Xigui Yang1( )Kaikai Liu1Zhongzheng Ding1Jinxu Qin1Yizhe Li1Chaofan Lv1Yuan Shang2( )Yuewen Zhang1Zhuangfei Zhang1Jinhao Zang1Lin Dong1Chong-Xin Shan1( )
Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
Supercomputer Center, Zhengzhou University, Zhengzhou 450001, China

Abstract

Piezochromic luminescent materials have shown great potential in advanced optoelectronic applications. However, most of luminescent materials usually undergo emission quenching under external stimuli. Herein, we demonstrate for the first time that the photoluminescence of carbon dots (CDs) confined within sodium hydroxide can be enhanced when high pressure is applied. They exhibit a 1.6-fold fluorescence enhancement compared with pristine CDs. Importantly, the enhanced fluorescence intensity can be retained after the release of pressure to ambient conditions. A combination of experimental analysis and theoretical simulations indicates that such an enhanced emission is mainly attributed to the strong confinement resulting from the sodium hydroxide matrix, which can separate the CDs spatially and restrict the nonradiative pathway. These results provide a rational strategy for manipulating the optical properties of CDs with enhanced and retainable photoluminescence (PL) performance, thus opening up a venue for designing luminescent CDs-based materials.

Keywords: carbon nanodots, high pressure, confinement effect, piezochromic fluorescence, emission enhancement

References(58)

1

Kim, S.; Yoon, S. J.; Park, S. Y. Highly fluorescent chameleon nanoparticles and polymer films: Multicomponent organic systems that combine FRET and photochromic switching. J. Am. Chem. Soc. 2012, 134, 12091–12097.

2

Kim, D. H.; D’Aléo, A.; Chen, X. K.; Sandanayaka, A. D. S.; Yao, D. D.; Zhao, L.; Komino, T.; Zaborova, E.; Canard, G.; Tsuchiya, Y. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photonics. 2018, 12, 98–104.

3

Wang, Y.; Tan, X.; Zhang, Y. M.; Zhu, S. Y.; Zhang, I.; Yu, B. H.; Wang, K.; Yang, B.; Li, M. J.; Zou, B. et al. Dynamic behavior of molecular switches in crystal under pressure and its reflection on tactile sensing. J. Am. Chem. Soc. 2015, 137, 931–939.

4

Zhao, Y. S.; Li, N. N.; Xu, C.; Li, Y.; Zhu, H. Y.; Zhu, P. W.; Wang, X.; Yang, W. G. Abnormal pressure-induced photoluminescence enhancement and phase decomposition in pyrochlore La2Sn2O7. Adv. Mater. 2017, 29, 1701513.

5

Sagara, Y.; Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 2009, 1, 605–610.

6

Chi, Z. G.; Zhang, X. Q.; Xu, B. J.; Zhou, X.; Ma, C. P.; Zhang, Y.; Liu, S. W.; Xu, J. R. Recent advances in organic mechanofluorochromic materials. Chem. Soc. Rev. 2012, 41, 3878–3896.

7

Wu, J.; Cheng, Y. Y.; Lan, J. B.; Wu, D.; Qian, S. Y.; Yan, L. P.; He, Z.; Li, X. Y.; Wang, K.; Zou, B. et al. Molecular engineering of mechanochromic materials by programmed C–H arylation: Making a counterpoint in the chromism trend. J. Am. Chem. Soc. 2016, 138, 12803–12812.

8

Chauvin, N.; Mavel, A.; Patriarche, G.; Masenelli, B.; Gendry, M.; Machon, D. Pressure-dependent photoluminescence study of wurtzite InP nanowires. Nano Lett. 2016, 16, 2926–2930.

9

Gan, Z. B.; Liu, Y. G.; Wang, L.; Jiang, S. Q.; Xia, N.; Yan, Z. P.; Wu, X.; Zhang, J. R.; Gu, W. M.; He, L. Z. et al. Distance makes a difference in crystalline photoluminescence. Nat. Commun. 2020, 11, 5572.

10

Lü, X. J.; Stoumpos, C.; Hu, Q. Y.; Ma, X. D.; Zhang, D. Z.; Guo, S. H.; Hoffman, J.; Bu, K. J.; Guo, X. F.; Wang, Y. Q. et al. Regulating off-centering distortion maximizes photoluminescence in halide perovskites. Natl. Sci. Rev. 2020, nwaa288.

11

Wang, L. R.; Yao, P. P.; Wang, F.; Li, S. F.; Chen, Y. P.; Xia, T. Y.; Guo, E. J.; Wang, K.; Zou, B.; Guo, H. Z. Pressure-induced structural evolution and bandgap optimization of lead-free halide double perovskite (NH4)2SeBr6. Adv. Sci. 2020, 7, 1902900.

12

Jaffe, A.; Lin, Y.; Mao, W. L.; Karunadasa, H. I. Pressure-induced metallization of the halide perovskite (CH3NH3)PbI3. J. Am. Chem. Soc. 2017, 139, 4330–4333.

13

Liu, S.; Sun, S. S.; Gan, C. K.; del Águila, A. G.; Fang, Y. N.; Xing, J.; Do, T. T. H.; White, T. J.; Li, H. G.; Huang, W. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 2019, 5, eaav9445.

14

Lv, C. F.; Yang, X. G.; Shi, Z. F.; Wang, L. R.; Sui, L. Z.; Li, Q. Y.; Qin, J. X.; Liu, K. K.; Zhang, Z. F.; Li, X. et al. Pressure-induced ultra-broad-band emission of a Cs2AgBiBr6 perovskite thin film . J. Phys. Chem. C 2020, 124, 1732–1738.

15

Mao, H. K.; Chen, X. J.; Ding, Y.; Li, B.; Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 2018, 90, 015007.

16

Yuan, Y.; Li, Y. W.; Fang, G. Y.; Liu, G. T.; Pei, C. Y.; Li, X.; Zheng, H. Y.; Yang, K.; Wang, L. Stoichiometric evolutions of PH3 under high pressure: Implication for high-Tc superconducting hydrides. Natl. Sci. Rev. 2019, 6, 524–531.

17

Huang, Y. W.; He, Y.; Sheng, H.; Lu, X.; Dong, H. N.; Samanta, S.; Dong, H. L.; Li, X. F.; Kim, D. Y.; Mao, H. K. et al. Li-ion battery material under high pressure: Amorphization and enhanced conductivity of Li4Ti5O12. Natl. Sci. Rev. 2019, 6, 239–246.

18

Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

19

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

20

Qu, S. N.; Zhou, D.; Li, D.; Ji, W. Y.; Jing, P. T.; Han, D.; Liu, L.; Zeng, H. B.; Shen, D. Z. Toward efficient orange emissive carbon nanodots through conjugated sp2-domain controlling and surface charges engineering . Adv. Mater. 2016, 28, 3516–3521.

21

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

22

Miao, X.; Qu, D.; Yang, D. X.; Nie, B.; Zhao, Y. K.; Fan, H. Y.; Sun, Z. C. Synthesis of carbon dots with multiple color emission by controlled graphitization and surface functionalization. Adv. Mater. 2018, 30, 1704740.

23

Jiang, K.; Wang, Y. H.; Cai, C. Z.; Lin, H. W. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications. Adv. Mater. 2018, 30, 1800783.

24

Zhang, J.; Yuan, Y.; Gao, M. L.; Han, Z.; Chu, C. Y.; Li, Y. G.; van Zijl, P. C. M.; Ying, M. Y.; Bulte, J. W. M.; Liu, G. S. Carbon dots as a new class of diamagnetic chemical exchange saturation transfer (diaCEST) MRI contrast agents. Angew. Chem., Int. Ed. 2019, 58, 9871–9875.

25

Hu, C.; Li, M. Y.; Qiu, J. S.; Sun, Y. P. Design and fabrication of carbon dots for energy conversion and storage. Chem. Soc. Rev. 2019, 48, 2315–2337.

26

Feng, T. L.; Tao, S. Y.; Yue, D.; Zeng, Q. S.; Chen, W. H.; Yang, B. Recent advances in energy conversion applications of carbon dots: From optoelectronic devices to electrocatalysis. Small 2020, 16, 2001295.

27

Shen, C. L.; Lou, Q.; Liu, K. K.; Dong, L.; Shan, C. X. Chemiluminescent carbon dots: Synthesis, properties, and applications. Nano Today 2020, 35, 100954.

28

Liu, K. K.; Song, S. Y.; Sui, L. Z.; Wu, S. X.; Jing, P. T.; Wang, R. Q.; Li, Q. Y.; Wu, G. R.; Zhang, Z. Z.; Yuan, K. J. et al. Efficient red/near-infrared-emissive carbon nanodots with multiphoton excited upconversion fluorescence. Adv. Sci. 2019, 6, 1900766.

29

Song, S. Y.; Liu, K. K.; Wei, J. Y.; Lou, Q.; Shang, Y.; Shan, C. X. Deep-ultraviolet emissive carbon nanodots. Nano Lett. 2019, 19, 5553–5561.

30

Liang, Y. C.; Gou, S. S.; Liu, K. K.; Wu, W. J.; Guo, C. Z.; Lu, S. Y.; Zang, J. H.; Wu, X. Y.; Lou, Q.; Dong, L. et al. Ultralong and efficient phosphorescence from silica confined carbon nanodots in aqueous solution. Nano Today 2020, 34, 100900.

31

Mao, W. L.; Mao, H K.; Eng, P. J.; Trainor, T. P.; Newville, M.; Kao, C. C.; Heinz, D. L.; Shu, J. F.; Meng, Y.; Hemley, R. J. Bonding changes in compressed superhard graphite. Science 2003, 302, 425–427.

32

Wang, L.; Liu, B. B; Li, H.; Yang, W. G.; Ding, Y.; Sinogeikin, S. V.; Meng, Y.; Liu, Z. X.; Zeng, X. C.; Mao, W. L. Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 2012, 337, 825–828.

33

Huang, Q.; Yu, D. L.; Xu, B.; Hu, W. T.; Ma, Y. M.; Wang, Y. B.; Zhao, Z. S.; Wen, B.; He, J. L.; Liu, Z. Y. et al. Nanotwinned diamond with unprecedented hardness and stability. Nature 2014, 510, 250–253.

34

Yang, X. G.; Yao, M. G.; Wu, X. Y.; Liu, S. J.; Chen, S. L.; Yang, K.; Liu, R.; Cui, T.; Sundqvist, B.; Liu, B. B. Novel superhard sp3 carbon allotrope from cold-compressed C70 peapods . Phys. Rev. Lett. 2017, 118, 245701.

35

Yang, X. G.; Lv, C. F.; Yao, Z.; Yao, M. G.; Qin, J. X.; Li, X.; Shi, L.; Du, M. R.; Liu, B. B.; Shan, C. X. Band-gap engineering and structure evolution of confined long linear carbon chains@double-walled carbon nanotubes under pressure. Carbon 2020, 159, 266–272.

36

Pei, C. Y.; Wang, L. Recent progress on high-pressure and high-temperature studies of fullerenes and related materials. Matter Radiat. Extrem. 2019, 4, 028201.

37

Dong, J. J.; Yao, Z.; Yao, M. G.; Li, R.; Hu, K.; Zhu, L. Y.; Wang, Y.; Sun, H. H.; Sundqvist, B.; Yang, K. et al. Decompression-induced diamond formation from graphite sheared under pressure. Phys. Rev. Lett. 2020, 124, 065701.

38

Zhang, Y.; Yao, M. G.; Du, M. R.; Yao, Z.; Wang, Y.; Dong, J. J.; Yang, Z. X.; Sundqvist, B.; Kováts, É.; Pekker, S. et al. Negative volume compressibility in Sc3N@C80-cubane cocrystal with charge transfer . J. Am. Chem. Soc. 2020, 142, 7584–7590.

39

Lu, S. Y.; Xiao, G. J.; Sui, L. Z.; Feng, T. L.; Yong, X.; Zhu, S. J.; Li, B. J.; Liu, Z. Y.; Zou, B.; Jin, M. X. et al. Piezochromic carbon dots with two-photon fluorescence. Angew. Chem., Int. Ed. 2017, 129, 6283–6287.

40

Liu, C.; Xiao, G. J.; Yang, M. L.; Zou, B.; Zhang, Z. L.; Pang, D. W. Mechanofluorochromic carbon nanodots: Controllable pressure-triggered blue-and red-shifted photoluminescence. Angew. Chem., Int. Ed. 2018, 57, 1893–1897.

41

Geng, T.; Feng, T. L.; Ma, Z. W.; Cao, Y.; Chen, Y. P.; Tao, S. Y.; Xiao, G. J.; Lu, S. Y.; Yang, B.; Zou, B. Insights into supramolecular-interaction-regulated piezochromic carbonized polymer dots. Nanoscale 2019, 11, 5072–5079.

42

Jing, P. T.; Han, D.; Li, D.; Zhou, D.; Shen, D. Z.; Xiao, G. J.; Zou, B.; Qu, S. N. Surface related intrinsic luminescence from carbon nanodots: Solvent dependent piezochromism. Nanoscale Horiz. 2019, 4, 175–181.

43

Wang, J. L.; Zhang, F.; Wang, Y. L.; Yang, Y. Z.; Liu, X. G. Efficient resistance against solid-state quenching of carbon dots towards white light emitting diodes by physical embedding into silica. Carbon 2018, 126, 426–436.

44

Wei, J. Y.; Lou, Q.; Zang, J. H.; Liu, Z. Y.; Ye, Y. L.; Shen, C. L.; Zhao, W. B.; Dong, L.; Shan, C. X. Scalable synthesis of green fluorescent carbon dot powders with unprecedented efficiency. Adv. Opt. Mater. 2020, 8, 1901938.

45

Li, W. D.; Liu, Y.; Wu, M.; Feng, X. L.; Redfern, S. A. T.; Shang, Y.; Yong, X.; Feng, T. L.; Wu, K. F.; Liu, Z. Y. et al. Carbon-quantum-dots-loaded ruthenium nanoparticles as an efficient electrocatalyst for hydrogen production in alkaline media. Adv. Mater. 2018, 30, 1800676.

46

Lu, S. Y.; Sui, L. Z.; Liu, J. J.; Zhu, S. J.; Chen, A. M.; Jin, M. X.; Yang, B. Near-infrared photoluminescent polymer-carbon nanodots with two-photon fluorescence. Adv. Mater. 2017, 29, 1603443.

47

Liang, Y. C.; Liu, K. K.; Wu, X. Y.; Lou, Q.; Sui, L. Z.; Dong, L.; Yuan, K. J.; Shan, C. X. Lifetime-engineered carbon nanodots for time division duplexing. Adv. Sci. 2021, 8, 2003433.

48

Yang, H. Y.; Liu, Y. L.; Guo, Z. Y.; Lei, B. F.; Zhuang, J. L.; Zhang, X. J.; Liu, Z. M.; Hu, C. F. Hydrophobic carbon dots with blue dispersed emission and red aggregation-induced emission. Nat. Commun. 2019, 10, 1789.

49

Song, S. Y.; Sui, L. Z.; Liu, K. K.; Cao, Q.; Zhao, W. B.; Liang, Y. C.; Lv, C. F.; Zang, J. H.; Shang, Y.; Lou, Q. et al. Self-exothermic reaction driven large-scale synthesis of phosphorescent carbon nanodots. Nano Res. 2021, 14, 2231–2240.

50

Yan, F. Y.; Jiang, Y. X.; Sun, X. D.; Wei, J. F.; Chen, L.; Zhang, Y. Y. Multicolor carbon dots with concentration-tunable fluorescence and solvent-affected aggregation states for white light-emitting diodes. Nano Res. 2020, 13, 52–60.

51

Yuan, F. L.; He, P.; Xi, Z. F.; Li, X. H.; Li, Y. C.; Zhong, H. Z.; Fan, L. Z.; Yang, S. H. Highly efficient and stable white LEDs based on pure red narrow bandwidth emission triangular carbon quantum dots for wide-color gamut backlight displays. Nano Res. 2019, 12, 1669–1674.

52

Tan, J.; Li, Q. J.; Meng, S.; Li, Y. C.; Yang, J.; Ye, Y. X.; Tang, Z. K.; Qu, S. N.; Ren, X. D. Time-dependent phosphorescence colors from carbon dots for advanced dynamic information encryption. Adv. Mater. 2021, 33, 2006781.

53

Sun, Y. Q.; Liu, S. T.; Sun, L. Y.; Wu, S. S.; Hu, G. Q.; Pang, X. L.; Smith, A. T.; Hu, C. F.; Zeng, S. S.; Wang, W. X. et al. Ultralong lifetime and efficient room temperature phosphorescent carbon dots through multi-confinement structure design. Nat. Commun. 2020, 11, 5591.

54

Dong, Y. J.; Xu, B.; Zhang, J. B.; Tan, X.; Wang, L. J.; Chen, J. L.; Lv, H. G.; Wen, S. P.; Li, B.; Ye, L. et al. Piezochromic luminescence based on the molecular aggregation of 9,10-bis((E)-2-(pyrid-2-yl)vinyl)anthracene. Angew. Chem., Int. Ed. 2012, 51, 10782–10785.

55

Liu, Y. J.; Zeng, Q. X.; Zou, B.; Liu, Y.; Xu, B.; Tian, W. J. Piezochromic luminescence of donor–acceptor cocrystals: Distinct responses to anisotropic grinding and isotropic compression. Angew. Chem., Int. Ed. 2018, 57, 15670–15674.

56

Jiang, L.; Ding, H. Z.; Lu, S. Y.; Geng, T.; Xiao, G. J.; Zou, B.; Bi, H. Photoactivated fluorescence enhancement in F, N-doped carbon dots with piezochromic behavior. Angew. Chem., Int. Ed. 2020, 59, 9986–9991.

57

Wang, Q.; Zhang, S. J.; Wang, B. Y.; Yang, X. Y.; Zou, B.; Yang, B.; Lu, S. Y. Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots. Nanoscale Horiz. 2019, 4, 1227–1231.

58

Qi, Q. K.; Qian, J. Y.; Tan, X.; Zhang, J. B.; Wang, L. J.; Xu, B.; Zou, B.; Tian, W. J. Remarkable turn-on and color-tuned piezochromic luminescence: Mechanically switching intramolecular charge transfer in molecular crystals. Adv. Funct. Mater. 2015, 25, 4005–4010.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 May 2021
Revised: 05 July 2021
Accepted: 07 July 2021
Published: 24 July 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11804307, 12074348, U2004168, 62027816 and U1804155), the China Postdoctoral Science Foundation (Nos. 2018M630830, 2019T120631 and 2020M682310), and the Natural Science Foundation of Henan Province (Nos. 212300410410 and 212300410078).

Return