Journal Home > Volume 16 , Issue 4

Photocatalytic production of hydrogen peroxide (H2O2) is an ideal pathway for obtaining solar fuels. Herein, an S-scheme heterojunction is constructed in hybrid TiO2/In2S3 photocatalyst, which greatly promotes the separation of photogenerated carriers to foster efficient H2O2 evolution. These composite photocatalysts show a high H2O2 yield of 376 μmol/(L·h). The mechanism of charge transfer and separation within the S-scheme heterojunction is well studied by computational methods and experiments. Density functional theory and in-situ irradiated X-ray photoelectron spectroscopy results reveal distinct features of the S-scheme heterojunction in the TiO2/In2S3 hybrids and demonstrate charge transfer mechanisms. The density functional theory calculation and electron paramagnetic resonance results suggest that O2 reduction to H2O2 follows stepwise one-electron processes. In2S3 shows a much stronger interaction with O2 than TiO2 as well as a higher reduction ability, serving as the active sites for H2O2 generation. The work provides a novel design of S-scheme photocatalyst with high H2O2 evolution efficiency and mechanistically demonstrates the improved separation of charge carriers.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

TiO2/In2S3 S-scheme photocatalyst with enhanced H2O2-production activity

Show Author's information Yi Yang1Bei Cheng1Jiaguo Yu1,2Linxi Wang2( )Wingkei Ho3
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China
Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong 999077, China

Abstract

Photocatalytic production of hydrogen peroxide (H2O2) is an ideal pathway for obtaining solar fuels. Herein, an S-scheme heterojunction is constructed in hybrid TiO2/In2S3 photocatalyst, which greatly promotes the separation of photogenerated carriers to foster efficient H2O2 evolution. These composite photocatalysts show a high H2O2 yield of 376 μmol/(L·h). The mechanism of charge transfer and separation within the S-scheme heterojunction is well studied by computational methods and experiments. Density functional theory and in-situ irradiated X-ray photoelectron spectroscopy results reveal distinct features of the S-scheme heterojunction in the TiO2/In2S3 hybrids and demonstrate charge transfer mechanisms. The density functional theory calculation and electron paramagnetic resonance results suggest that O2 reduction to H2O2 follows stepwise one-electron processes. In2S3 shows a much stronger interaction with O2 than TiO2 as well as a higher reduction ability, serving as the active sites for H2O2 generation. The work provides a novel design of S-scheme photocatalyst with high H2O2 evolution efficiency and mechanistically demonstrates the improved separation of charge carriers.

Keywords: step-scheme heterojunction, photocatalytic H2O2 production, TiO2/In2S3 nanofibres

References(65)

[1]

Lin, Y. J.; Khan, I.; Saha, S.; Wu, C. C.; Barman, S. R.; Kao, F. C.; Lin, Z. H. Thermocatalytic hydrogen peroxide generation and environmental disinfection by Bi2Te3 nanoplates. Nat. Commun. 2021, 12, 180.

[2]

Hou, W. S.; Li, Y. X.; Ouyang, S. X.; Chen, H. Y.; Ye, J. H.; Han, X. P.; Deng, Y. D. Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H2O2 production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chem. Commun. 2019, 55, 13279–13282.

[3]

Chen, G. Y.; Liu, J. W.; Li, Q. Q.; Guan, P. F.; Yu, X. F.; Xing, L. S.; Zhang, J.; Che, R. C. A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 2019, 12, 2614–2622.

[4]

Zhang, D. D.; Xu, G. Q.; Chen, T.; Chen, F. Photocatalytically green synthesis of H2O2 using 2-ethyl-9,10-anthraquinone as an electron condenser. RSC Adv. 2014, 4, 52199–52202.

[5]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[6]

Dittmeyer, R.; Grunwaldt, J. D.; Pashkova, A. A review of catalyst performance and novel reaction engineering concepts in direct synthesis of hydrogen peroxide. Catal. Today 2015, 248, 149–159.

[7]

Wilson, N. M.; Flaherty, D. W. Mechanism for the direct synthesis of H2O2 on Pd clusters: Heterolytic reaction pathways at the liquid-solid interface. J. Am. Chem. Soc. 2016, 138, 574–586.

[8]

Liu, Q. R.; Zhou, L.; Liu, L. H.; Li, J. Q.; Wang, S. B.; Znad, H.; Liu, S. M. Magnetic ZnO@Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol. Compos. Part B: Eng. 2020, 200, 108345.

[9]

Liu, Y. S.; Han, J.; Qiu, W.; Gao, W. Hydrogen peroxide generation and photocatalytic degradation of estrone by microstructural controlled ZnO nanorod arrays. Appl. Surf. Sci. 2012, 263, 389–396.

[10]

Moon, G. H.; Kim, W.; Bokare, A. D.; Sung, N. E.; Choi, W. Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 2014, 7, 4023–4028.

[11]

Fuku, K.; Takioka, R.; Iwamura, K.; Todoroki, M.; Sayama, K.; Ikenaga, N. Photocatalytic H2O2 production from O2 under visible light irradiation over phosphate ion-coated Pd nanoparticles-supported BiVO4. Appl. Catal. B: Environ. 2020, 272, 119003.

[12]

Hirakawa, H.; Shiota, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Au nanoparticles supported on BiVO4: Effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 2016, 6, 4976–4982.

[13]

Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780.

[14]

Fu, Y. J.; Liu, C. A.; Zhang, M. L.; Zhu, C.; Li, H.; Wang, H. B.; Song, Y. X.; Huang, H.; Liu, Y.; Kang, Z. H. Photocatalytic H2O2 and H2 generation from living chlorella vulgaris and carbon micro particle comodified g-C3N4. Adv. Energy Mater. 2018, 8, 1802525.

[15]

Burek, B. O.; Bahnemann, D. W.; Bloh, J. Z. Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 2019, 9, 25–37.

[16]

Wang, J.; Wang, G. H.; Cheng, B.; Yu, J. G.; Fan, J. J. Sulfur-doped g-C3N4/TiO2 S-scheme heterojunction photocatalyst for Congo Red photodegradation. Chin. J. Catal. 2021, 42, 56–68.

[17]

Lee, T.; Bui, H. T.; Yoo, J.; Ra, M.; Han, S. H.; Kim, W.; Kwon, W. Formation of TiO2@carbon core/shell nanocomposites from a single molecular layer of aromatic compounds for photocatalytic hydrogen peroxide generation. ACS Appl. Mater. Interfaces 2019, 11, 41196–41203.

[18]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[19]

Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.

[20]

Li, X. Z.; Chen, C. C.; Zhao, J. C. Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 2001, 17, 4118–4122.

[21]

Zhang, J. Z.; Zheng, L. H.; Wang, F.; Chen, C.; Wu, H. D.; Leghari, S. A. K.; Long, M. The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2. Appl. Catal. B: Environ. 2020, 269, 118770.

[22]

Zheng, L. H.; Su, H. R.; Zhang, J. Z.; Walekar, L. S.; Molamahmood, H. V.; Zhou, B. X.; Long, M.; Hu, Y. H. Highly selective photocatalytic production of H2O2 on sulfur and nitrogen co-doped graphene quantum dots tuned TiO2. Appl. Catal. B: Environ. 2018, 239, 475–484.

[23]

Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E. Sustained production of H2O2 on irradiated TiO2-fluoride systems. Chem. Commun. 2005, 2627–2629.

[24]

Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au–Ag bimetallic alloy nanoparticles. ACS Catal. 2012, 2, 599–603.

[25]

Teranishi, M.; Hoshino, R.; Naya, S. I.; Tada, H. Gold-nanoparticle-loaded carbonate-modified titanium (IV) oxide surface: Visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem., Int. Ed. 2016, 55, 12773–12777.

[26]

Tada, H. Overall water splitting and hydrogen peroxide synthesis by gold nanoparticle-based plasmonic photocatalysts. Nanoscale Adv. 2019, 1, 4238–4245.

[27]

Zuo, G. F.; Li, B. D.; Guo, Z. L.; Wang, L.; Yang, F.; Hou, W. S.; Zhang, S. T.; Zong, P. X.; Liu, S. S.; Meng, X. G. et al. Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2. Catalysts 2019, 9, 623.

[28]

Wang, R.; Shi, M. S.; Xu, F. Y.; Qiu, Y.; Zhang, P.; Shen, K. L.; Zhao, Q.; Yu, J. G.; Zhang, Y. F. Graphdiyne-modified TiO2 nanofibers with osteoinductive and enhanced photocatalytic antibacterial activities to prevent implant infection. Nat. Commun. 2020, 11, 4465.

[29]

Xu, F. Y.; Meng, K.; Cheng, B.; Wang, S. Y.; Xu, J. S.; Yu, J. G. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 4613.

[30]

He, F.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Ho, W.; Macyk, W. 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity. Appl. Catal. B: Environ. 2020, 272, 119006.

[31]

Wang, Z. L.; Chen, Y. F.; Zhang, L. Y.; Cheng, B.; Yu, J. G.; Fan, J. J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150.

[32]

Liu, C. B.; Meng, D. S.; Li, Y.; Wang, L. L.; Liu, Y. T.; Luo, S. L. Hierarchical architectures of ZnS–In2S3 solid solution onto TiO2 nanofibers with high visible-light photocatalytic activity. J. Alloys Compd. 2015, 624, 44–52.

[33]

Tiwari, J. N.; Singh, A. N.; Sultan, S.; Kim, K. S. Recent advancement of p- and d-block elements, single atoms, and graphene-based photoelectrochemical electrodes for water splitting. Adv. Energy Mater. 2020, 10, 2000280.

[34]

He, R. A.; Liu, H. J.; Liu, H. M.; Xu, D. F.; Zhang, L. Y. S-scheme photocatalyst Bi2O3/TiO2 nanofiber with improved photocatalytic performance. J. Mater. Sci. Technol. 2020, 52, 145–151.

[35]

He, F.; Meng, A. Y.; Cheng, B.; Ho, W.; Yu, J. G. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chin. J. Catal. 2020, 41, 9–20.

[36]

Han, M. M.; Yu, L. M.; Chen, W. Y.; Wang, W. Z.; Jia, J. H. Fabrication and photoelectrochemical characteristics of In2S3 nano-flower films on TiO2 nanorods arrays. Appl. Surf. Sci. 2016, 369, 108–114.

[37]

Zuo, Y.; Chen, J. J.; Yang, H. C.; Zhang, M.; Wang, Y. F.; He, G.; Sun, Z. Q. Facile synthesis of TiO2/In2S3/CdS ternary porous heterostructure arrays with enhanced photoelectrochemical and visible-light photocatalytic properties. J. Mater. Chem. C 2019, 7, 9065–9074.

[38]

Ma, Y. S.; Wang, Y.; Jiang, T. Y.; Zhang, F. X.; Li, X. M.; Zhu, Y. Y. Hydrothermal synthesis of novel 1-aminoperylene diimide/TiO2/MoS2 composite with enhanced photocatalytic activity. Sci. Rep. 2020, 10, 22005.

[39]

Wu, R.; Xu, Y.; Xu, R.; Huang, Y.; Zhang, B. Ultrathin-nanosheet-based 3D hierarchical porous In2S3 microspheres: Chemical transformation synthesis, characterization, and enhanced photocatalytic and photoelectrochemical property. J. Mater. Chem. A 2015, 3, 1930–1934.

[40]

Yang, Y.; Tan, H. Y.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. Near-infrared-responsive photocatalysts. Small Methods 2021, 5, 2001042.

[41]

Chai, B.; Peng, T. Y.; Zeng, P.; Mao, J. Synthesis of floriated In2S3 decorated with TiO2 nanoparticles for efficient photocatalytic hydrogen production under visible light. J. Mater. Chem. 2011, 21, 14587–14593.

[42]

Xu, Q. L.; Zhang, L. Y.; Cheng, B.; Fan, J. J.; Yu, J. G. S-scheme heterojunction photocatalyst. Chem 2020, 6, 1543–1559.

[43]

Wageh, S.; Al-Ghamdi, A. A.; Liu, L. J. S-scheme heterojunction photocatalyst for CO2 photoreduction. Acta Phys. Chim. Sin. 2021, 37, 2010024.

[44]

Fei, X. G.; Tan, H. Y.; Cheng, B.; Zhu, B. C.; Zhang, L. Y. 2D/2D black phosphorus/g-C3N4 S-scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations. Acta Phys. Chim. Sin. 2021, 37, 2010027.

[45]

Liu, L. Z.; Hu, T. P.; Dai, K.; Zhang, J. F.; Liang, C. H. A novel step-scheme BiVO4/Ag3VO4 photocatalyst for enhanced photocatalytic degradation activity under visible light irradiation. Chin. J. Catal. 2021, 42, 46–55.

[46]

Xia, P. F.; Cao, S. W.; Zhu, B. C.; Liu, M. J.; Shi, M. S.; Yu, J. G.; Zhang, Y. F. Designing a 0D/2D S-scheme heterojunction over polymeric carbon nitride for visible-light photocatalytic inactivation of bacteria. Angew. Chem., Int. Ed. 2020, 59, 5218–5225.

[47]

Mei, F. F.; Li, Z.; Dai, K.; Zhang, J. F.; Liang, C. H. Step-scheme porous g-C3N4/Zn0.2Cd0.8S-DETA composites for efficient and stable photocatalytic H2 production. Chin. J. Catal. 2020, 41, 41–49.

[48]

Wei, J. X.; Chen, Y. W.; Zhang, H. Y.; Zhuang, Z. Y.; Yu, Y. Hierarchically porous S-scheme CdS/UiO-66 photocatalyst for efficient 4-nitroaniline reduction. Chin. J. Catal. 2021, 42, 78–86.

[49]

Xie, Q.; He, W. M.; Liu, S. W.; Li, C. H.; Zhang, J. F.; Wong, P. K. Bifunctional S-scheme g-C3N4/Bi/BiVO4 hybrid photocatalysts toward artificial carbon cycling. Chin. J. Catal. 2020, 41, 140–153.

[50]

Chou, J. C.; Liao, L. P. Study on pH at the point of zero charge of TiO2 pH ion-sensitive field effect transistor made by the sputtering method. Thin Solid Films 2005, 476, 157–161.

[51]

Gao, C.; Li, J. T.; Shan, Z. C.; Huang, F. Q.; Shen, H. L. Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 2010, 122, 183–187.

[52]

Štengl, V.; Opluštil, F.; Němec, T. In3+-doped TiO2 and TiO2/In2S3 nanocomposite for photocatalytic and stoichiometric degradations. Photochem. Photobiol. 2012, 88, 265–276.

[53]

Sun, Z. J.; Lv, B. H.; Li, J. S.; Xiao, M.; Wang, X. Y.; Du, P. W. Core–shell amorphous cobalt phosphide/cadmium sulfide semiconductor nanorods for exceptional photocatalytic hydrogen production under visible light. J. Mater. Chem. A 2016, 4, 1598–1602.

[54]

Liu, Y.; Hao, X. Q.; Hu, H. Q.; Jin, Z. L. High efficiency electron transfer realized over NiS2/MoSe2 S-scheme heterojunction in photocatalytic hydrogen evolution. Acta Phys. Chim. Sin. 2021, 37, 2008030.

[55]

Feng, C. Y.; Tang, L.; Deng, Y. C.; Wang, J. J.; Luo, J.; Liu, Y. N.; Ouyang, X. L.; Yang, H. R.; Yu, J. F.; Wang, J. J. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution. Adv. Funct. Mater. 2020, 30, 2001922.

[56]

Ge, H. N.; Xu, F. Y.; Cheng, B.; Yu, J. G.; Ho, W. S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst. ChemCatChem 2019, 11, 6301–6309.

[57]

Butler, M. A.; Ginley, D. S. Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 1978, 125, 228–232.

[58]

Gao, R. R.; Cheng, B.; Fan, J. J.; Yu, J. G.; Ho, W. ZnxCd1–xS quantum dot with enhanced photocatalytic H2-production performance. Chin. J. Catal. 2021, 42, 15–24.

[59]

Li, Z. F.; Wu, Z. H.; He, R. A.; Wan, L.; Zhang, S. Y. In2O3−x(OH)y/Bi2MoO6 S-scheme heterojunction for enhanced photocatalytic performance. J. Mater. Sci. Technol. 2020, 56, 151–161.

[60]

Xu, F. Y.; Tan, H. Y.; Fan, J. J.; Cheng, B.; Yu, J. G.; Xu, J. S. Electrospun TiO2-based photocatalysts. Sol. RRL 2021, 5, 2000571.

[61]

Qin, D. R.; Xia, Y.; Li, Q.; Yang, C.; Qin, Y. M.; Lv, K. L. One-pot calcination synthesis of Cd0.5Zn0.5S/g-C3N4 photocatalyst with a step-scheme heterojunction structure. J. Mater. Sci. Technol. 2020, 56, 206–215.

[62]

Carp, O.; Huisman, C. L.; Reller, A. Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 2004, 32, 33–177.

[63]

Xia, Y.; Zhang, L. Y.; Hu, B. W.; Yu, J. G.; Al-Ghamdi, A. A.; Wageh, S. Design of highly-active photocatalytic materials for solar fuel production. Chem. Eng. J. 2020, 421, 127732.

[64]

Deng, H. Z.; Fei, X. G.; Yang, Y.; Fan, J.; Yu, J. G.; Cheng, B.; Zhang, L. Y. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. J. 2021, 409, 127377.

[65]

Zhao, X. S.; You, Y. Y.; Huang, S. B.; Wu, Y. X.; Ma, Y. Y.; Zhang, G.; Zhang, Z. H. Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B: Environ. 2020, 278, 119251.

File
12274_2021_3733_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 April 2021
Revised: 28 June 2021
Accepted: 06 July 2021
Published: 22 July 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52073223, 51932007, 51961135303, 21871217, U1905215 and U1705251).

Return