AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water

Jianbo Zhao1( )Haifeng Yuan1Guang Yang1Yingfan Liu1Xiaomei Qin1Zheng Chen2( )Cheong Weng-Chon3Liming Zhou1Shaoming Fang1( )
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao SAR, China
Show Author Information

Graphical Abstract

Abstract

The structure and size of bimetallic catalysts play a crucial role in many important chemical transformations. Controlled synthesis of bimetallic nanoparticles avoiding overgrowth and aggregation can be achieved by surfactants, which are always detrimental to catalytic performances and understanding of structure-property relationship. Preparation of surface-clean bimetallic catalysts with uniform size and well-defined structure is still challenging. Herein the Au-Pt bimetallic nanoparticles immobilized on SBA-15 were prepared by facile adsorption-reduction method. Characterizations showed that Au-Pt bimetallic nanoparticles were evenly confined within the mesopores of SBA-15, possessing the uniform size of 6.0 nm and existing in the form of alloy structure. For the first time the Au-Pt bimetallic nanoalloys with Au-to-Pt molar ratio of 5:1 (Au5Pt1@SBA-15) exhibited a lot higher activity than monometallic Au@SBA-15 and Pt@SBA-15 catalysts with excellent selectivity towards 1,2,3,4-tetrahydroquinoline for chemoselective hydrogenation of quinoline in water under very mild conditions. It was superior to other heterogeneous catalysts reported to date. The observed properties were related to the synergic effect between Au and Pt. The Pt sites of high electron density originated from the electron transfer between Au and Pt enhanced the ability of H2 dissociation and then provided a new and main approach to H2 splitting, while the Au sites accounted for the adsorption and activation of quinoline. This precise synthetic strategy will be very helpful to explore surface-clean gold-based bimetallic catalysts with high performance for selective hydrogenations.

Electronic Supplementary Material

Download File(s)
3732_ESM.pdf (941.2 KB)

References

1

Zhang, Z.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 64, 1919–1929.

2

Cao, Y. Q.; Zhang, H.; Ji, S. F.; Sui, Z. J.; Jiang, Z.; Wang, D. S.; Zaera, F.; Zhou, X. G.; Duan, X. Z.; Li, Y. D. Adsorption site regulation to guide atomic design of Ni–Ga catalysts for acetylene semi-hydrogenation. Angew. Chem., Int. Ed. 2020, 59, 11647–11652.

3

Chen, X.; Qiao, Z. W.; Hou, B.; Jiang, H.; Gong, W.; Dong, J. Q.; Li, H. Y.; Cui, Y.; Liu, Y. Chiral metal-organic frameworks with tunable catalytic selectivity in asymmetric transfer hydrogenation reactions. Nano Res. 2021, 14, 466–472.

4

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

5

Deraedt, C.; Ye, R.; Ralston, W. T.; Toste, F. D.; Somorjai, G. A. Dendrimer-stabilized metal nanoparticles as efficient catalysts for reversible dehydrogenation/hydrogenation of N-heterocycles. J. Am. Chem. Soc. 2017, 139, 18084–18092.

6

Guo, M.; Li, C.; Yang, Q. H. Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catal. Sci. Technol. 2017, 7, 2221–2227.

7

Zhang, S.; Xia, Z. M.; Ni, T. Y.; Zhang, Z. Y.; Ma, Y. Y.; Qu, Y. Q. Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. J. Catal. 2018, 359, 101–111.

8

Gong, Y. T.; Zhang, P. F.; Xu, X.; Li, Y.; Li, H. R.; Wang, Y. A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J. Catal. 2013, 297, 272–280.

9

Wang, X.; Chen, W. X.; Zhang, L.; Yao, T.; Liu, W.; Lin, Y.; Ju, H. X.; Dong, J. C.; Zheng, L. R.; Yan, W. S. et al. Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline. J. Am. Chem. Soc. 2017, 139, 9419–9422.

10

Dell'Anna, M. M.; Capodiferro, V. F.; Mali, M.; Manno, D.; Cotugno, P.; Monopoli, A.; Mastrorilli, P. Highly selective hydrogenation of quinolines promoted by recyclable polymer supported palladium nanoparticles under mild conditions in aqueous medium. Appl. Catal. A-Gen. 2014, 481, 89–95.

11

Ge, D. H.; Hu, L.; Wang, J. Q.; Li, X. M.; Qi, F. Q.; Lu, J. M.; Cao, X. Q.; Gu, H. W. Reversible hydrogenation-oxidative dehydrogenation of quinolines over a highly active Pt nanowire catalyst under mild conditions. ChemCatChem 2013, 5, 2183–2186.

12

Xue, X. R.; Zeng, M.; Wang, Y. H. Highly active and recyclable Pt nanocatalyst for hydrogenation of quinolines and isoquinolines. Appl. Catal. A-Gen. 2018, 560, 37–41.

13

Zhang, L.; Wang, X. Y.; Xue, Y.; Zeng, X. J.; Chen, H.; Li, R. X.; Wang, S. L. Cooperation between the surface hydroxyl groups of Ru-SiO2@mSiO2 and water for good catalytic performance for hydrogenation of quinoline. Catal. Sci. Technol. 2014, 4, 1939–1948.

14

Zhu, D. M.; Jiang, H. B.; Zhang, L.; Zheng, X. L.; Fu, H. Y.; Yuan, M. L.; Chen, H.; Li, R. X. Aqueous phase hydrogenation of quinoline to decahydroquinoline catalyzed by ruthenium nanoparticles supported on glucos-derived carbon spheres. ChemCatChem 2014, 6, 2954–2960.

15

Wei, Z. Z.; Chen, Y. Q.; Wang, J.; Su, D. F.; Tang, M. H.; Mao, S. J.; Wang, Y. Cobalt encapsulated in N-doped graphene layers: An efficient and stable catalyst for hydrogenation of quinoline compounds. ACS Catal. 2016, 6, 5816–5822.

16

Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y. Fan, K. N. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts. J. Am. Chem. Soc. 2012, 134, 17592–17598.

17

Masatake, H.; Tetsuhiko, K.; Hiroshi, S.; Nobumasa, Y. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.

18

Bailie, J. E.; Hutchings, G. J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun. 1999, 2151–2152.

19
Weng, B.; Jiang, Y. H.; Liao, H. G.; Roeffaers, M. B. J.; Lai, F. L.; Huang, H. W.; Tang, Z. C. Visualizing light-induced dynamic structural transformations of Au clusters-based photocatalyst via in situ TEM. Nano Res., in press, DOI: 10.1007/s12274-021-3289-z.https://doi.org/10.1007/s12274-021-3289-z
20

Zhang, Y.; Hu, B.; Cao, X. M.; Luo, L.; Xiong, Y.; Wang, Z. P; Hong, X.; Ding, S. Y. β-Cyclodextrin polymer networks stabilized gold nanoparticle with superior catalytic activities. Nano Res. 2021, 14, 1018–1025.

21

Zhao, J. B.; Li, Q.; Zhuang, S. L.; Song, Y. B.; Morris, D. J.; Zhou, M.; Wu, Z. K.; Zhang, P.; Jin, R. C. Reversible control of chemoselectivity in Au38(SR)24 nanocluster-catalyzed transfer hydrogenation of nitrobenzaldehyde derivatives. J. Phys. Chem. Lett. 2018, 9, 7173–7179.

22

Zhu, Y.; Qian, H. F.; Drake, B. A.; Jin, R. C. Atomically precise Au25(SR)18 nanoparticles as catalysts for the selective hydrogenation of α, β-unsaturated ketones and aldehydes. Angew. Chem., Int. Ed. 2010, 49, 1295–1298.

23

Tan, Y.; Liu, X. Y.; Li, L.; Kang, L. L.; Wang, A. Q.; Zhang, T. Effects of divalent metal ions of hydrotalcites on catalytic behavior of supported gold nanocatalysts for chemoselective hydrogenation of 3-nitrostyrene. J. Catal. 2018, 364, 174–182.

24

Zhao, J. B.; Yuan, H. F.; Qin, X. M.; Tian, K.; Liu, Y. F.; Wei, C. Z.; Zhang, Z. Q.; Zhou, L. M.; Fang, S. M. Au nanoparticles confined in SBA-15 as a highly efficient and stable catalyst for hydrogenation of quinoline to 1, 2, 3, 4-tetrahydroquinoline. Catal. Lett. 2020, 150, 2841–2849.

25

Zhao, J. B.; Yuan, H. F.; Li, J. C.; Bing, W. Z.; Yang, W. C.; Liu, Y. F.; Chen, J. L.; Wei, C. Z.; Zhou, L. M.; Fang, S. M. Effects of preparation parameters of NiAl oxide-supported Au catalysts on nitro compounds chemoselective hydrogenation. ACS Omega 2020, 5, 7011–7017.

26

Xue, Z. G.; Yan, M. Y.; Yu, X.; Tong, Y. J.; Zhou, H.; Zhao, Y. F.; Wang, Z. Y.; Zhang, Y. S.; Xiong, C.; Yang, J. et al. One-dimensional segregated single Au sites on step-rich ZnO ladder for ultrasensitive NO2 sensors. Chem 2020, 6, 3364–3373.

27

Zhao, C. M.; Luo, G.; Liu, X. K.; Zhang, W.; Li, Z. J.; Xu, Q.; Zhang, Q. H.; Wang, H. J.; Li, D. M.; Zhou, F. Y. et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction. Adv. Mater. 2020, 32, 2002382.

28

Peng, Y.; Li, L. D.; Tao, R.; Tan, L. Y.; Qiu, M. N.; Guo, L. One-pot synthesis of Au@Pt star-like nanocrystals and their enhanced electrocatalytic performance for formic acid and ethanol oxidation. Nano Res. 2018, 11, 3222–3232.

29

Zhang, X. Y.; Yang, P. F.; Liu, Y. N.; Pan, J. H.; Li, D. Q.; Wang, B.; Feng, J. T. Support morphology effect on the selective oxidation of glycerol over AuPt/CeO2 catalysts. J. Catal. 2020, 385, 146–159.

30

Xu, Y. J.; Liu, L. L.; Chong, H. B.; Yang, S.; Xiang, J.; Meng, X. M.; Zhu, M. Z. The key gold: Enhanced platinum catalysis for the selective hydrogenation of α, β-unsaturated ketone. J. Phys. Chem. C 2016, 120, 12446–12451.

31

Serna, P.; Concepción, P.; Corma, A. Design of highly active and chemoselective bimetallic gold-platinum hydrogenation catalysts through kinetic and isotopic studies. J. Catal. 2009, 265, 19–25.

32

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

33

Suntivich, J.; Xu, Z. C.; Carlton, C. E.; Kim, J.; Han, B. H.; Lee, S. W.; Bonnet, N.; Marzari, N.; Allard, L. F.; Gasteiger, H. A. et al. Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. J. Am. Chem. Soc. 2013, 135, 7985–7991.

34

Cargnello, M.; Agarwal, R.; Klein, D. R.; Diroll, B. T.; Agarwal, R.; Murray, C. B. Uniform bimetallic nanocrystals by high-temperature seed-mediated colloidal synthesis and their catalytic properties for semiconducting nanowire growth. Chem. Mater. 2015, 27, 5833–5838.

35

Zhang, L.; Yu, S. N.; Zhang, J. J.; Gong, J. L. Porous single-crystalline AuPt@Pt bimetallic nanocrystals with high mass electrocatalytic activities. Chem. Sci. 2016, 7, 3500–3505.

36

Zhou, M.; Li, C.; Fang, J. Y. Noble-metal based random alloy and intermetallic nanocrystals: Syntheses and applications. Chem. Rev. 2021, 121, 736–795.

37

Sun, K. Q.; Hong, Y. C.; Zhang, G. R.; Xu, B. Q. Synergy between Pt and Au in Pt-on-Au nanostructures for chemoselective hydrogenation catalysis. ACS Catal. 2011, 1, 1336–1346.

38

Schoenbaum, C. A.; Schwartz, D. K.; Medlin, J. W. Controlling the surface environment of heterogeneous catalysts using self-assembled monolayers. Acc. Chem. Res. 2014, 47, 1438–1445.

39

Niu, Z. Q.; Li, Y. D. Removal and utilization of capping agents in nanocatalysis. Chem. Mater. 2014, 26, 72–83.

40

Guo, L.; Mao, J. J.; Guo, S. X.; Zhang, Q.; Cai, S. F.; He, W. PtAu bimetallic nanocatalyst for selective hydrogenation of alkenes over aryl halides. Nano Res. 2019, 12, 1659–1662.

41

Zhao, J. B.; Yuan, H. F.; Gui, Y. H.; Li, X. M.; Qin, X. M.; Wei, C. Z.; Liu, Y. F.; Wang, G. Q.; Zhou, L. M; Fang, S. M. Engineering the interface of Au nanocatalysts with FeOx for enhanced selective hydrogenation of cinnamaldehyde. J. Mater. Sci. 2021, 56, 5760–5771.

42

Petkov, V.; Wanjala, B. N.; Loukrakpam, R.; Luo, J.; Yang, L. F.; Zhong, C. J.; Shastri, S. Pt-Au alloying at the nanoscale. Nano Lett. 2012, 12, 4289–4299.

43

Zhang, Z. W.; Zhang, J. H.; Liu, G. Q.; Xue, M. W.; Wang, Z. Z.; Bu, X. H.; Wu, Q.; Zhao, X. J. Selective deposition of Au-Pt alloy nanoparticles on ellipsoidal zirconium titanium oxides for reduction of 4-nitrophenol. Korean J. Chem. Eng. 2017, 34, 2471–2479.

44

Wu, K.; Wang, X. Y.; Guo, L. L.; Xu, Y. J.; Zhou, L.; Lyu, Z. Y.; Liu, K. Y.; Si, R.; Zhang, Y. W.; Sun, L. D. et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Res. 2020, 13, 2044–2055.

45

Onoe, T.; Iwamoto, S.; Inoue, M. Synthesis and activity of the Pt catalyst supported on CNT. Catal. Commun. 2007, 8, 701–706.

46

Lopez-Sanchez, J. A.; Dimitratos, N.; Miedziak, P.; Ntainjua, E.; Edwards, J. K.; Morgan, D.; Carley, A. F.; Tiruvalam, R.; Kiely, C. J.; Hutchings, G. J. Au-Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis. Phys. Chem. Chem. Phys. 2008, 10, 1921–1930.

47

Gołąbiewska, A.; Lisowski, W.; Jarek, M.; Nowaczyk, G.; Michalska, M.; Jurga, S.; Zaleska-Medynska, A. The effect of metals content on the photocatalytic activity of TiO2 modified by Pt/Au bimetallic nanoparticles prepared by sol-gel method. Mol. Catal. 2017, 442, 154–163.

48

Luo, Z. M.; Tan, C. L.; Lai, Z. C.; Zhang, X.; Chen, J. Z.; Chen, Y.; Chen, B.; Gong, Y.; Zhang, Z. C.; Wu, X. et al. A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution. Sci. China Mater. 2019, 62, 115–121.

49

Ma, Z. H.; Tian, H.; Meng, G.; Peng, L. X.; Chen, Y. F.; Chen, C.; Chang, Z. W.; Cui, X. Z.; Wang, L. J.; Jiang, W. et al. Size effects of platinum particles@CNT on HER and ORR performance. Sci. China Mater. 2020, 63, 2517–2529.

50

Zhao, J. B.; Liu, H.; Ye, S.; Cui, Y. M.; Xue, N. H.; Peng, L. M.; Guo, X. F.; Ding, W. P. Half-encapsulated Au nanoparticles by nano iron oxide: Promoted performance of the aerobic oxidation of 1-phenylethanol. Nanoscale 2013, 5, 9546–9552.

51
van der Hoeven, J. E. S.; Jelic, J.; Olthof, L. A.; Totarella, G., van Dijk-Moes, R. J. A.; Krafft, J. M.; Louis, C.; Studt, F., van Blaaderen, A.; de Jongh, P. E. Unlocking synergy in bimetallic catalysts by core-shell design. Nat. Mater., in press, DOI: 10.1038/s41563-021-00996-3.https://doi.org/10.1038/s41563-021-00996-3
52

Zhang, S.; Xia, Z. M.; Ni, T.; Zhang, H.; Wu, C.; Qu, Y. Q. Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines. J. Mater. Chem. A 2017, 5, 3260–3266.

53

Cui, X. J.; Huang, Z. J.; van Muyden, A. P.; Fei, Z. F.; Wang, T.; Dyson, P. J. Acceptorless dehydrogenation and hydrogenation of N- and O-containing compounds on Pd3Au1(111) facets. Sci. Adv. 2020, 6, eabb3831.

54

Li, J. J.; Zhu, B. L.; Wang, G. C.; Liu, Z. F.; Huang, W. P.; Zhang, S. M. Enhanced CO catalytic oxidation over an Au-Pt alloy supported on TiO2 nanotubes: Investigation of the hydroxyl and Au/Pt ratio influences. Catal. Sci. Technol. 2018, 8, 6109–6122.

55

Hsu, C. Y.; Chiu, T. C.; Shih, M. H.; Tsai, W. J.; Chen, W. Y.; Lin, C. H. Effect of electron density of Pt catalysts supported on alkali titanate nanotubes in cinnamaldehyde hydrogenation. J. Phys. Chem. C 2010, 114, 4502–4510.

56

Zhang, S.; Li, J.; Xia, Z. M.; Wu, C.; Zhang, Z. Y.; Ma, Y. Y.; Qu, Y. Q. Towards highly active Pd/CeO2 for alkene hydrogenation by tuning Pd dispersion and surface properties of the catalysts. Nanoscale 2017, 9, 3140–3149.

Nano Research
Pages 1796-1802
Cite this article:
Zhao J, Yuan H, Yang G, et al. AuPt bimetallic nanoalloys supported on SBA-15: A superior catalyst for quinoline selective hydrogenation in water. Nano Research, 2022, 15(3): 1796-1802. https://doi.org/10.1007/s12274-021-3732-1
Topics:

904

Views

28

Crossref

28

Web of Science

30

Scopus

0

CSCD

Altmetrics

Received: 11 May 2021
Revised: 14 June 2021
Accepted: 04 July 2021
Published: 15 August 2021
© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Return