Journal Home > Volume 15 , Issue 3

The synthesis of high-quality ultrathin overlayers is critically dependent on the surface structure of substrates, especially involving the overlayer–substrate interaction. By using in situ surface measurements, we demonstrate that the overlayer–substrate interaction can be tuned by doping near-surface Ar nanobubbles. The interfacial coupling strength significantly decreases with near-surface Ar nanobubbles, accompanying by an “anisotropic to isotropic” growth transformation. On the substrate containing near-surface Ar, the growth front crosses entire surface atomic steps in both uphill and downhill directions with no difference, and thus, the morphology of the two-dimensional (2D) overlayer exhibits a round-shape. Especially, the round-shaped 2D overlayers coalesce seamlessly with a growth acceleration in the approaching direction, which is barely observed in the synthesis of 2D materials. This can be attributed to the immigration lifetime and diffusion rate of growth species, which depends on the overlayer–substrate interaction and the surface catalysis. Furthermore, the “round to hexagon” morphological transition is achieved by etching-regrowth, revealing the inherent growth kinetics under quasi-freestanding conditions. These findings provide a novel promising way to modulate the growth, coalescence, and etching dynamics of 2D materials on solid surfaces by adjusting the strength of overlayer–substrate interaction, which contributes to optimization of large-scale production of 2D material crystals.


menu
Abstract
Full text
Outline
About this article

Growth, coalescence, and etching of two-dimensional overlayers on metals modulated by near-surface Ar nanobubbles

Show Author's information Wei Wei1Jiaqi Pan1Haiping Lin2Chanan Euaruksakul3Zhiyun Li1Rong Huang1Li Wang1Zhujun Wang4,5( )Qiang Fu6( )Yi Cui1( )
Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
Synchrotron Light Research Institute, Nakhon Ratchasima 30000, Thailand
School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, China
Scientific Center for Optical and Electron Microscopy, ETH Zürich, 8093 Zürich, Switzerland
State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, the Chinese Academy of Sciences, Dalian 116023, China

Abstract

The synthesis of high-quality ultrathin overlayers is critically dependent on the surface structure of substrates, especially involving the overlayer–substrate interaction. By using in situ surface measurements, we demonstrate that the overlayer–substrate interaction can be tuned by doping near-surface Ar nanobubbles. The interfacial coupling strength significantly decreases with near-surface Ar nanobubbles, accompanying by an “anisotropic to isotropic” growth transformation. On the substrate containing near-surface Ar, the growth front crosses entire surface atomic steps in both uphill and downhill directions with no difference, and thus, the morphology of the two-dimensional (2D) overlayer exhibits a round-shape. Especially, the round-shaped 2D overlayers coalesce seamlessly with a growth acceleration in the approaching direction, which is barely observed in the synthesis of 2D materials. This can be attributed to the immigration lifetime and diffusion rate of growth species, which depends on the overlayer–substrate interaction and the surface catalysis. Furthermore, the “round to hexagon” morphological transition is achieved by etching-regrowth, revealing the inherent growth kinetics under quasi-freestanding conditions. These findings provide a novel promising way to modulate the growth, coalescence, and etching dynamics of 2D materials on solid surfaces by adjusting the strength of overlayer–substrate interaction, which contributes to optimization of large-scale production of 2D material crystals.

Keywords: two dimensional materials, overlayer–substrate interaction, near-surface Ar nanobubbles, evolution behavior, surface dynamics

References(67)

1

Schwierz, F. Industry-compatible graphene transistors. Nature 2011, 472, 41–42.

2

Chen, J. H.; Ishigami, M.; Jang, C.; Hines, D. R.; Fuhrer, M. S.; Williams, E. D. Printed graphene circuits. Adv. Mater. 2007, 19, 3623–3627.

3

Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics 2010, 4, 611–622.

4

Li, X. S.; Cai, W. W.; An, J. B.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

5

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

6

Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

7

Batzill, M. The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects. Surf. Sci. Rep. 2012, 67, 83–115.

8

Qin, B.; Ma, H. F.; Hossain, M.; Zhong, M. Z.; Xia, Q. L.; Li, B.; Duan, X. D. Substrates in the synthesis of two-dimensional materials via chemical vapor deposition. Chem. Mater. 2020, 32, 10321–10347.

9

Sutter, P.; Sutter, E. Microscopy of graphene growth, processing, and properties. Adv. Funct. Mater. 2013, 23, 2617–2634.

10

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

11

Miniussi, E.; Pozzo, M.; Mentes, T. O.; Niño, M. A.; Locatelli, A.; Vesselli, E.; Comelli, G.; Lizzit, S.; Alfè, D.; Baraldi, A. The competition for graphene formation on Re(0001): A complex interplay between carbon segregation, dissolution and carburisation. Carbon 2014, 73, 389–402.

12

Günther, S.; Dänhardt, S.; Wang, B.; Bocquet, M. L.; Schmitt, S.; Wintterlin, J. Single terrace growth of graphene on a metal surface. Nano Lett. 2011, 11, 1895–1900.

13

Meng, C. X.; Gao, J. F.; Li, R. T.; Ning, Y. X.; Chang, Y.; Mu, R. T.; Fu, Q.; Bao, X. H. Step-confined thin film growth via near-surface atom migration. Nano Res. 2020, 13, 1552–1557.

14

Yu, Q. K.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J. F.; Su, Z. H.; Cao, H. L.; Liu, Z. H.; Pandey, D.; Wei, D. G. et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.

15

Sutter, P.; Sadowski, J. T.; Sutter, E. Graphene on Pt(111): Growth and substrate interaction. Phys. Rev. B 2009, 80, 245411.

16

Coraux, J.; N'Diaye, A. T.; Engler, M.; Busse, C.; Wall, D.; Buckanie, N.; zu Heringdorf, F. J. M.; van Gastel, R.; Poelsema, B.; Michely, T. Growth of graphene on Ir(111). New J. Phys. 2009, 11, 023006.

17

Zeng, M. Q.; Tan, L. F.; Wang, L. X.; Mendes, R. G.; Qin, Z. H.; Huang, Y. X.; Zhang, T.; Fang, L. W.; Zhang, Y. F.; Yue, S. L. et al. Isotropic growth of graphene toward smoothing stitching. ACS Nano 2016, 10, 7189–7196.

18

Lee, J. S.; Choi, S. H.; Yun, S. J.; Kim, Y. I.; Boandoh, S.; Park, J. H.; Shin, B. G.; Ko, H.; Lee, S. H.; Kim, Y. M. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 2018, 362, 817–821.

19

Liu, B. Z.; Wang, H. H.; Gu, W.; Zhou, L.; Chen, Z. L.; Nie, Y. F.; Tan, C. W.; Ci, H. N.; Wei, N.; Cui, L. Z. et al. Oxygen-assisted direct growth of large-domain and high-quality graphene on glass targeting advanced optical filter applications. Nano Res. 2021, 14, 260–267.

20

Chen, Y. B.; Sun, J. Y.; Gao, J. F.; Du, F.; Han, Q.; Nie, Y. F.; Chen, Z. L.; Bachmatiuk, A.; Priydarshi, M. K.; Ma, D. L. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 2015, 27, 7839–7846.

21

Weatherup, R. S.; Amara, H.; Blume, R.; Dlubak, B.; Bayer, B. C.; Diarra, M.; Bahri, M.; Cabrero-Vilatela, A.; Caneva, S.; Kidambi, P. R. et al. Interdependency of subsurface carbon distribution and graphene-catalyst interaction. J. Am. Chem. Soc. 2014, 136, 13698–13708.

22

Wei, W.; Lin, L.; Zhang, G. H.; Ye, X. Q.; Bin, R.; Meng, C. X.; Ning, Y. X.; Fu, Q.; Bao, X. H. Effect of near-surface dopants on the epitaxial growth of h-BN on metal surfaces. Adv. Mater. Interfaces 2019, 6, 1801906.

23

Kohn, W.; Becke, A. D.; Parr, R. G. Density functional theory of electronic structure. J. Phys. Chem. 1996, 100, 12974–12980.

24

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

25

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

26

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

27

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

28

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

29

Preobrajenski, A. B.; Ng, M. L.; Vinogradov, A. S.; Mårtensson, N. Controlling graphene corrugation on lattice-mismatched substrates. Phys. Rev. B 2008, 78, 073401.

30

Kirsch, H.; Tong, Y. J.; Campen, R. K. Experimental characterization of CCH(ads) and CCH2(ads) during the thermal decomposition of methane and ethylene on Ru(0001). Chem Cat Chem 2016, 8, 728–735.

31

Ren, Y.; Waluyo, I.; Beale, E.; Trenary, M. Hydrogenation and dehydrogenation reactions of C2Hx moieties on the Ru(001) surface. Surf. Sci. 2016, 650, 144–148.

32

Gsell, M.; Jakob, P.; Menzel, D. Effect of substrate strain on adsorption. Science 1998, 280, 717–720.

33
Locatelli, A.; Menteş, T. O. Chemical and magnetic imaging with X-ray photoemission electron microscopy. In Synchrotron Radiation; Mobilio, S.; Boscherini, F.; Meneghini, C., Eds.; Springer: Berlin, Heidelberg, 2015; pp 571−591.https://doi.org/10.1007/978-3-642-55315-8_21
DOI
34

Tchaplyguine, M.; Feifel, R.; Marinho, R. R. T.; Gisselbrecht, M.; Sorensen, S. L.; de Brito, A. N.; Mårtensson, N.; Svensson, S.; Björneholm, O. Selective probing of the electronic structure of free clusters using resonant core-level spectroscopy. Chem. Phys. 2003, 289, 3–13.

35

Sutter, P.; Hybertsen, M. S.; Sadowski, J. T.; Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru(0001). Nano Lett. 2009, 9, 2654–2660.

36

McCarty, K. F.; Feibelman, P. J.; Loginova, E.; Bartelt, N. C. Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0 0 0 1). Carbon 2009, 47, 1806–1813.

37

Zhang, Y. H.; Weng, X. F.; Li, H.; Li, H. B.; Wei, M. M.; Xiao, J. P.; Liu, Z.; Chen, M. S.; Fu, Q.; Bao, X. H. Hexagonal boron nitride cover on Pt(111): A new route to tune molecule-metal interaction and metal-catalyzed reactions. Nano Lett. 2015, 15, 3616–3623.

38

Yang, Y.; Fu, Q.; Wei, M. M.; Bluhm, H.; Bao, X. H. Stability of BN/metal interfaces in gaseous atmosphere. Nano Res. 2015, 8, 227–237.

39

Wang, Z. J.; Dong, J. C.; Li, L. F.; Dong, G. C.; Cui, Y.; Yang, Y.; Wei, W.; Blume, R.; Li, Q.; Wang, L. et al. The coalescence behavior of two-dimensional materials revealed by multiscale in situ imaging during chemical vapor deposition growth. ACS Nano 2020, 14, 1902–1918.

40

Addou, R.; Dahal, A.; Batzill, M. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nat. Nanotechnol. 2013, 8, 41–45.

41

Starodub, E.; Bartelt, N. C.; McCarty, K. F. Oxidation of graphene on metals. J. Phys. Chem. C 2010, 114, 5134–5140.

42

Wei, W.; Meng, C. X.; Fu, Q.; Bao, X. H. Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy. Sci. China Chem. 2017, 60, 656–662.

43

Lu, G. Y.; Wu, T. R.; Yuan, Q. H.; Wang, H. S.; Wang, H. M.; Ding, F.; Xie, X. M.; Jiang, M. H. Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 2015, 6, 6160.

44

Xu, X. Z.; Zhang, Z. H.; Qiu, L.; Zhuang, J. N.; Zhang, L.; Wang, H.; Liao, C. N.; Song, H. D.; Qiao, R. X.; Gao, P. et al. Ultrafast growth of single-crystal graphene assisted by a continuous oxygen supply. Nat. Nanotechnol. 2016, 11, 930–935.

45

Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.

46

Wang, Z. J.; Weinberg, G.; Zhang, Q.; Lunkenbein, T.; Klein-Hoffmann, A.; Kurnatowska, M.; Plodinec, M.; Li, Q.; Chi, L. F.; Schloegl, R. et al. Direct observation of graphene growth and associated copper substrate dynamics by in situ scanning electron microscopy. ACS Nano 2015, 9, 1506–1519.

47

Navin, J. K.; Donald, S. B.; Tinney, D. G.; Cushing, G. W.; Harrison, I. Communication: Angle-resolved thermal dissociative sticking of CH4 on Pt(111): Further indication that rotation is a spectator to the gas-surface reaction dynamics. J. Chem. Phys. 2012, 136, 061101.

48

Harris, J.; Luntz, A. C. Tunneling-mediated dissociation at metal surfaces. Mod. Phys. Lett. B 1991, 5, 1953–1962.

49

Wang, Z. J.; Ding, F.; Eres, G.; Antonietti, M.; Schloegl, R.; Willinger, M. G. Formation mechanism, growth kinetics, and stability limits of graphene adlayers in metal-catalyzed CVD growth. Adv. Mater. Interfaces 2018, 5, 1800255.

50

Sun, Y. Y. L.; Zhang, S.; Zhang, W. H.; Li, Z. Y. Theoretical study of adsorption and dehydrogenation of C2H4 on Cu(410). Chin. J. Chem. Phys. 2018, 31, 485–491.

51

Wu, B.; Geng, D. C.; Xu, Z. P.; Guo, Y. L.; Huang, L. P.; Xue, Y. Z.; Chen, J. Y.; Yu, G.; Liu, Y. Q. Self-organized graphene crystal patterns. NPG Asia Mater. 2013, 5, e36.

52

Dong, G. C.; Frenken, J. W. M. Kinetics of graphene formation on Rh(111) investigated by in situ scanning tunneling microscopy. ACS Nano 2013, 7, 7028–7033.

53

Xu, Z. G.; Tian, H.; Khanaki, A.; Zheng, R. J.; Suja, M.; Liu, J. L. Large-area growth of multi-layer hexagonal boron nitride on polished cobalt foils by plasma-assisted molecular beam epitaxy. Sci. Rep. 2017, 7, 43100.

54

Blume, R.; Niehus, H.; Conrad, H.; Böttcher, A.; Aballe, L.; Gregoratti, L.; Barinov, A.; Kiskinova, M. Identification of subsurface oxygen species created during oxidation of Ru(0001). J. Phys. Chem. B 2005, 109, 14052–14058.

55

Sekerka, R. F. Equilibrium and growth shapes of crystals: How do they differ and why should we care? Cryst. Res. Technol. 2005, 40, 291–306.

56

Wang, L.; Xu, X. Z.; Zhang, L. N.; Qiao, R. X.; Wu, M. H.; Wang, Z. C.; Zhang, S.; Liang, J.; Zhang, Z. H.; Zhang, Z. B. et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95.

57

Zhang, Y.; Li, Z.; Kim, P.; Zhang, L. Y.; Zhou, C. W. Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 2012, 6, 126–132.

58

Dobrik, G.; Tapasztó, L.; Biró, L. P. Selective etching of armchair edges in graphite. Carbon 2013, 56, 332–338.

59

Wang, Z. J.; Dong, J. C.; Cui, Y.; Eres, G.; Timpe, O.; Fu, Q.; Ding, F.; Schloegl, R.; Willinger, M. G. Stacking sequence and interlayer coupling in few-layer graphene revealed by in situ imaging. Nat. Commun. 2016, 7, 13256.

60

Zhang, X. Y.; Li, H.; Ding, F. Self-assembly of carbon atoms on transition metal surfaces-chemical vapor deposition growth mechanism of graphene. Adv. Mater. 2014, 26, 5488–5495.

61

Artyukhov, V. I.; Hao, Y. F.; Ruoff, R. S.; Yakobson, B. I. Breaking of symmetry in graphene growth on metal substrates. Phys. Rev. Lett. 2015, 114, 115502.

62

Ma, T.; Ren, W. C.; Zhang, X. Y.; Liu, Z. B.; Gao, Y.; Yin, L. C.; Ma, X. L.; Ding, F.; Cheng, H. M. Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition. Proc. Natl. Acad. Sci. USA 2013, 110, 20386–20391.

63

Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. USA 2012, 109, 15136–15140.

64

Liu, Y. Y.; Dobrinsky, A.; Yakobson, B. I. Graphene edge from armchair to zigzag: The origins of nanotube chirality? Phys. Rev. Lett. 2010, 105, 235502.

65

Zeng, M. Q.; Tan, L. F.; Wang, J.; Chen, L. F.; Rümmeli, M. H.; Fu, L. Liquid metal: An innovative solution to uniform graphene films. Chem. Mater. 2014, 26, 3637–3643.

66

Xie, S.; Xu, M. S.; Liang, T.; Huang, G. W.; Wang, S. P.; Xue, G. B.; Meng, N.; Xu, Y.; Chen, H. Z.; Ma, X. Y. et al. A high-quality round-shaped monolayer MoS2 domain and its transformation. Nanoscale 2016, 8, 219–225.

67

Wei, W.; Meng, J.; Meng, C. X.; Ning, Y. X.; Li, Q. X.; Fu, Q.; Bao, X. H. Abnormal growth kinetics of h-BN epitaxial monolayer on Ru(0001) enhanced by subsurface Ar species. Appl. Phys. Lett. 2018, 112, 171601.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 May 2021
Revised: 01 July 2021
Accepted: 03 July 2021
Published: 29 July 2021
Issue date: March 2022

Copyright

© The Author (s) 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21872169, 91845109, 21688102, and 21825203), the National Key R&D Program of China (No. 2016YFA0200200), Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB17020000), China Postdoctoral Science Foundation (No. 2019M651997), and Natural Science Foundation of Jiangsu Province (No. BK20200257). The authors are grateful for the support for Synchrotron Light Research Institute in Thailand.

Rights and permissions

Copyright: 2021 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return