Journal Home > Volume 15 , Issue 3

The explosively developed era of big-data compels the increasing demand of nonvolatile memory with high efficiency and excellent storage properties. Herein, we fabricated a high-speed photoelectric multilevel memory device for neuromorphic computing. The novel two-dimensional (2D) MoSSe with a unique Janus structure was employed as the channel, and the stack of Al2O3/black phosphorus quantum dots (BPQDs)/Al2O3 was adopted as the dielectric. The storage performance of the resulting memory could be verified by the endurance and retention tests, in which the device could remain stable states of programming and erasing even after 1, 000 cycles and 1, 000 s. The multibit storage could be realized through both different voltage amplitudes and pulse numbers, which could achieve 6 bits (64 distinguishable levels) under pulse width of 50 ns. Furthermore, our memory device also could realize the simulations of synapses in human brain with optical and electric modulations synergistically, such as excitatory post-synaptic current (EPSC), long-term potentiation/depression (LTP/LTD), and spike-timing-dependent plasticity (STDP). Neuromorphic computing was successfully achieved through a high recognition of handwritten digits up to 92.5% after 103 epochs. This research is a promising avenue for the future development of efficient memory and artificial neural network systems.


menu
Abstract
Full text
Outline
About this article

A high-speed 2D optoelectronic in-memory computing device with 6-bit storage and pattern recognition capabilities

Show Author's information Jialin Meng1Tianyu Wang1Zhenyu He1Qingxuan Li1Hao Zhu1,2Li Ji1,2Lin Chen1,2( )Qingqing Sun1,2( )David Wei Zhang1,2
State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
National Integrated Circuit Innovation Center, No. 825 Zhangheng Road, Shanghai 201203, China

Abstract

The explosively developed era of big-data compels the increasing demand of nonvolatile memory with high efficiency and excellent storage properties. Herein, we fabricated a high-speed photoelectric multilevel memory device for neuromorphic computing. The novel two-dimensional (2D) MoSSe with a unique Janus structure was employed as the channel, and the stack of Al2O3/black phosphorus quantum dots (BPQDs)/Al2O3 was adopted as the dielectric. The storage performance of the resulting memory could be verified by the endurance and retention tests, in which the device could remain stable states of programming and erasing even after 1, 000 cycles and 1, 000 s. The multibit storage could be realized through both different voltage amplitudes and pulse numbers, which could achieve 6 bits (64 distinguishable levels) under pulse width of 50 ns. Furthermore, our memory device also could realize the simulations of synapses in human brain with optical and electric modulations synergistically, such as excitatory post-synaptic current (EPSC), long-term potentiation/depression (LTP/LTD), and spike-timing-dependent plasticity (STDP). Neuromorphic computing was successfully achieved through a high recognition of handwritten digits up to 92.5% after 103 epochs. This research is a promising avenue for the future development of efficient memory and artificial neural network systems.

Keywords: memory, multibit, two-dimensional (2D), MoSSe, Co-modulation

References(50)

1

Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field–effect transistor based on graphene–WS2 heterostructures for flexible and transparent electronics. Nature Nanotech. 2013, 8, 100–103.

2

Jeong, H. Y.; Kim, J. Y.; Kim, J. W.; Hwang, J. O.; Kim, J. E.; Lee, J. Y.; Yoon, T. H.; Cho, B. J.; Kim, S. O.; Ruoff, R. S. et al. Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett. 2010, 10, 4381–4386.

3

Wang, K. L.; Alzate, J. G.; Amiri, P. K. Low–power non–volatile spintronic memory: STT–RAM and beyond. J. Phys. D: Appl. Phys. 2013, 46, 074003.

4

Wang, T. Y.; Meng, J. L.; Rao, M. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Three–dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020, 20, 4111–4120.

5

Wang, T. Y.; Meng, J. L.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 2020, 7, 1903480.

6

Choi, J.; Han, J. S.; Hong, K.; Kim, S. Y.; Jang, H. W. Organic–inorganic hybrid halide perovskites for memories, transistors, and artificial synapses. Adv. Mater. 2018, 30, 1704002.

7

Borghetti, J.; Li, Z. Y.; Straznicky, J.; Li, X. M.; Ohlberg, D. A. A.; Wu, W.; Stewart, D. R.; Williams, R. S. A hybrid nanomemristor/transistor logic circuit capable of self–programming. Proc. Nati. Acad. Sci. USA 2009, 106, 1699–1703.

8

Zhou, L.; Yang, S. W.; Ding, G. Q.; Yang, J. Q.; Ren, Y.; Zhang, S. R.; Mao, J. Y.; Yang, Y. C.; Zhou, Y.; Han, S. T. Tunable synaptic behavior realized in C3N composite based memristor. Nano Energy 2019, 58, 293–303.

9

Wang, S. P.; He, C. L.; Tang, J.; Lu, X. B.; Shen, C.; Yu, H.; Du, L. J.; Li, J. F.; Yang, R.; Shi, D. X. et al. New floating gate memory with excellent retention characteristics. Adv. Electron. Mater. 2019, 5, 1800726.

10

Fang, H.; Chuang, S.; Chang, T. C.; Takei, K.; Takahashi, T.; Javey, A. High–performance single layered WSe2 p–FETs with chemically doped contacts. Nano Lett. 2012, 12, 3788–3792.

11

Li, H. M.; Lee, D.; Qu, D. S.; Liu, X. C.; Ryu, J.; Seabaugh, A.; Yoo, W. J. Ultimate thin vertical p–n junction composed of two–dimensional layered molybdenum disulfide. Nat. Commun. 2015, 6, 6564.

12

Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J. S.; Yin, X. T.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R. M. et al. MoS2 p–type transistors and diodes enabled by high work function MoOx Contacts. Nano Lett. 2014, 14, 1337–1342.

13

Choi, M. S.; Qu, D. S.; Lee, D.; Liu, X. C.; Watanabe, K.; Taniguchi, T.; Yoo, W. J. Lateral MoS2 p–n junction formed by chemical doping for use in high–performance optoelectronics. ACS Nano 2014, 8, 9332–9340.

14

Yang, C. S.; Shang, D. S.; Liu, N.; Shi, G.; Shen, X.; Yu, R. C.; Li, Y. Q.; Sun, Y. A synaptic transistor based on quasi–2D molybdenum oxide. Adv. Mater. 2017, 29, 1700906.

15

Huang, X.; Zeng, Z. Y.; Zhang, H. Metal dichalcogenide nanosheets: Preparation, properties and applications. Chem. Soc. Rev. 2013, 42, 1934–1946.

16

Nourbakhsh, A.; Zubair, A.; Dresselhaus, M. S.; Palacios, T. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 2016, 16, 1359–1366.

17

Liu, C. S.; Yan, X.; Wang, J. L.; Ding, S. J.; Zhou, P.; Zhang, D. W. Eliminating overerase behavior by designing energy band in high–speed charge–trap memory based on WSe2. Small 2017, 13, 1604128.

18

Sarkar, D.; Xie, X. J.; Liu, W.; Cao, W.; Kang, J. H.; Gong, Y. J.; Kraemer, S.; Ajayan, P. M.; Banerjee, K. A subthermionic tunnel field–effect transistor with an atomically thin channel. Nature 2015, 526, 91–95.

19

Wang, Y.; Liu, E. F.; Gao, A. Y.; Cao, T. J.; Long, M. S.; Pan, C.; Zhang, L. L.; Zeng, J. W.; Wang, C. Y.; Hu, W. D. et al. Negative photoconductance in van der Waals heterostructure–based floating gate phototransistor. ACS Nano 2018, 12, 9513–9520.

20

Vu, Q. A.; Kim, H.; Van Luan Nguyen; Won, U. Y.; Adhikari, S.; Kim, K.; Lee, Y. H.; Yu, W. J. A high–on/off–ratio floating–gate memristor array on a flexible substrate via CVD–grown large–area 2D layer stacking. Adv. Mater. 2017, 29, 1703363.

21

Lu, A. Y.; Zhu, H. Y.; Xiao, J.; Chuu, C. P.; Han, Y. M.; Chiu, M. H.; Cheng, C. C.; Yang, C. W.; Wei, K. H.; Yang, Y. M. et al. Janus monolayers of transition metal dichalcogenides. Nature Nanotech. 2017, 12, 744–749.

22

Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free–standing monolayer MoS2. Nat. Nanotech. 2015, 10, 151–155.

23

Lee, D.; Hwang, E.; Lee, Y.; Choi, Y.; Kim, J. S.; Lee, S.; Cho, J. H. Multibit MoS2 photoelectronic memory with ultrahigh sensitivity. Adv. Mater. 2016, 28, 9196–9202.

24

Wang, X. H.; Zhang, Z. C.; Wang, J. J.; Chen, X. D.; Yao, B. W.; Hou, Y. X.; Yu, M. X.; Li, Y.; Lu, T. B. Synthesis of wafer–scale monolayer pyrenyl graphdiyne on ultrathin hexagonal boron nitride for multibit optoelectronic memory. ACS Appl. Mater. Interfaces 2020, 12, 33069–33075.

25

Ho, V. M.; Lee, J. A.; Martin, K. C. The cell biology of synaptic plasticity. Science 2011, 334, 623–628.

26

Abbott, L. F.; Regehr, W. G. Synaptic computation. Nature 2004, 431, 796–803.

27

Tian, H.; Zhao, L. F.; Wang, X. F.; Yeh, Y. W.; Yao, N.; Rand, B. P.; Ren, T. L. Extremely low operating current resistive memory based on exfoliated 2D perovskitesingle crystals for neuromorphic computing. ACS Nano 2017, 11, 12247–12256.

28

Waldrop, M. M. Computer modelling: Brain in a box. Nature 2012, 482, 456–458.

29

Merolla, P. A.; Arthur, J. V.; Alvarez–Icaza, R.; Cassidy, A. S.; Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; Nakamura, Y. et al. A million spiking–neuron integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673.

30

Li, C.; Belkin, D.; Li, Y. N.; Yan, P.; Hu, M.; Ge, N.; Jiang, H.; Montgomery, E.; Lin, P.; Wang, Z. R. et al. Efficient and self–adaptive in –situ learning in multilayer memristor neural networks. Nat. Commun. 2018, 9, 2385.

31

Meng, J. L.; Wang, T. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Ji, L.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Flexible boron nitride–based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 2021, 8, 538–546.

32

Li, J. Y.; Liu, L.; Chen, X. Z.; Liu, C. S.; Wang, J. L.; Hu, W. D.; Zhang, D. W.; Zhou, P. Symmetric ultrafast writing and erasing speeds in quasi–nonvolatile memory via van der Waals heterostructures. Adv. Mater. 2019, 31, 1808035.

33

Mukherjee, B.; Zulkefli, A.; Watanabe, K.; Taniguchi, T.; Wakayama, Y.; Nakaharai, S. Laser–assisted multilevel non–volatile memory device based on 2D van–der–Waals few–layer–ReS2/h–BN/graphene heterostructures. Adv. Funct. Mater. 2020, 30, 2001688.

34

He, G.; Ramamoorthy, H.; Kwan, C. P.; Lee, Y. H.; Nathawat, J.; Somphonsane, R.; Matsunaga, M.; Higuchi, A.; Yamanaka, T.; Aoki, N. et al. Thermally assisted nonvolatile memory in monolayer MoS2 transistors. Nano Lett. 2016, 16, 6445–6451.

35

Hou, X.; Zhang, H.; Liu, C. S.; Ding, S. J.; Bao, W. Z.; Zhang, D. W.; Zhou, P. Charge-trap memory based on hybrid 0D quantum dot–2D WSe2 structure. Small 2018, 14, 1800319.

36

Lee, Y. T.; Kwon, H.; Kim, J. S.; Kim, H. H.; Lee, Y. J.; Lim, J. A.; Song, Y. W.; Yi, Y.; Choi, W. K.; Hwang, D. K. et al. Nonvolatile ferroelectric memory circuit using black phosphorus nanosheet–based field–effect transistors with P(VDF–TrFE) polymer. ACS Nano 2015, 9, 10394–10401.

37

Zhang, E. Z.; Wang, W. Y.; Zhang, C.; Jin, Y. B.; Zhu, G. D.; Sun, Q. Q.; Zhang, D. W.; Zhou, P.; Xiu, F. X. Tunable charge–trap memory based on few–layer MoS2. ACS Nano 2015, 9, 612–619.

38

Yu, W. J.; Chae, S. H.; Lee, S. Y.; Duong, D. L.; Lee, Y. H. Ultra–transparent, flexible single–walled carbon nanotube non–volatile memory device with an oxygen–decorated graphene electrode. Adv. Mater. 2011, 23, 1889–1893.

39

Vu, Q. A.; Shin, Y. S.; Kim, Y. R.; Van Luan Nguyen; Kang, W. T.; Kim, H.; Luong, D. H.; Lee, I. M.; Lee, K.; Ko, D. S. et al. Two–terminal floating–gate memory with van der Waals heterostructures for ultrahigh on/off ratio. Nat. Commun. 2016, 7, 12725.

40

Liu, C. S.; Yan, X.; Song, X. F.; Ding, S. J.; Zhang, D. W.; Zhou, P. A semi–floating gate memory based on van der Waals heterostructures for quasi–non–volatile applications. Nature Nanotech. 2018, 13, 404–410.

41

Choi, M. S.; Lee, G. H.; Yu, Y. J.; Lee, D. Y.; Lee, S. H.; Kim, P.; Hone, J.; Yoo, W. J. Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices. Nat. Commun. 2013, 4, 1624.

42

Mishra, A.; Janardanan, A.; Khare, M.; Kalita, H.; Kottantharayil, A. Reduced multilayer graphene oxide floating gate flash memory with large memory window and robust retention characteristics. IEEE Electr. Device L. 2013, 34, 1136–1138.

43

Park, Y.; Lee, J. S. Flexible multistate data storage devices fabricated using natural lignin at room temperature. ACS Appl. Mater. Interfaces 2017, 9, 6207–6212.

44

Chen, Z. W.; Huang, W. C.; Zhao, W. B.; Hou, C. M.; Ma, C.; Liu, C. C.; Sun, H. Y.; Yin, Y. W.; Li, X. G. Ultrafast multilevel switching in Au/YIG/n–Si RRAM. Adv. Electron. Mater. 2019, 5, 1800418.

45

Tran, M. D.; Kim, H.; Kim, J. S.; Doan, M. H.; Chau, T. K.; Vu, Q. A.; Kim, J. H.; Lee, Y. H. Two–terminal multibit optical memory via van der Waals heterostructure. Adv. Mater. 2019, 31, 1807075.

46

Kim, S. H.; Yi, S. G.; Park, M. U.; Lee, C.; Kim, M.; Yoo, K. H. Multilevel MoS2 optical memory with photoresponsive top floating gates. ACS Appl. Mater. Interfaces 2019, 11, 25306–25312.

47

John, R. A.; Liu, F. C.; Chien, N. A.; Kulkarni, M. R.; Zhu, C.; Fu, Q. D.; Basu, A.; Liu, Z.; Mathews, N. Synergistic gating of electro-iono-photoactive 2D chalcogenide neuristors: Coexistence of hebbian and homeostatic synaptic metaplasticity. Adv. Mater. 2018, 30, 1800220.

48

Yang, R.; Huang, H. M.; Hong, Q. H.; Yin, X. B.; Tan, Z. H.; Shi, T.; Zhou, Y. X.; Miao, X. S.; Wang, X. P.; Mi, S. B. et al. Synaptic suppression triplet–STDP learning rule realized in second–order memristors. Adv. Funct. Mater. 2018, 28, 1704455.

49

Cooke, S. F.; Bliss, T. V. P. Plasticity in the human central nervous system. Brain 2006, 129, 1659–1673.

50

Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient–based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2021
Revised: 29 June 2021
Accepted: 03 July 2021
Published: 11 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 92064009, 61904033, and 62004044), Shanghai Rising-Star Program (No. 19QA1400600), the Program of Shanghai Subject Chief Scientist (No. 18XD1402800), the Support Plans for the Youth Top-Notch Talents of China, and the National Postdoctoral Program for Innovative Talents (No. BX2021070).

Return