Journal Home > Volume 15 , Issue 3

Interlayer excitons (IXS) are electron–hole pairs bound in the spatial separation layer by the Coulomb effect, and their lifetime is several orders of magnitude longer than that of direct excitons, providing an essential platform for long-lived exciton devices. The recent emergence of the van der Waals heterostructure (HS), which combines two layers of different transitional metal dichalcogenides (TMDs), has created new opportunities for IX research. Herein, we demonstrate the observation of double indirect interlayer excitons in the MoSe2/WSe2 HS using photoluminescence (PL) spectroscopy. The intensities of the two peaks are essentially the same, and the energy difference is 22 meV, which is perfectly in line with the calculation result of density functional theory. Furthermore, the experience of variable excitation power also proves that the splitting of the IXs originates from the conduction band spin-splitting of MoSe2. The observation results provide a promising platform for further exploring the new physical properties and optoelectronic phenomena of TMD HS.


menu
Abstract
Full text
Outline
About this article

Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure

Show Author's information Biao Wu1,2,§Yunpeng Wang1,§Jiahong Zhong1,2Cheng Zeng1,2Yassine Madoune1,2Wanting Zhu1Zongwen Liu3,4Yanping Liu1,2,5( )
School of Physics and ElectronicsHunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, China
State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Southern District, High-tech Industrial Park, Yuehai Street, Nanshan District, Shenzhen 518057, China

§Biao Wu and Yunpeng Wang contributed equally to this work.

Abstract

Interlayer excitons (IXS) are electron–hole pairs bound in the spatial separation layer by the Coulomb effect, and their lifetime is several orders of magnitude longer than that of direct excitons, providing an essential platform for long-lived exciton devices. The recent emergence of the van der Waals heterostructure (HS), which combines two layers of different transitional metal dichalcogenides (TMDs), has created new opportunities for IX research. Herein, we demonstrate the observation of double indirect interlayer excitons in the MoSe2/WSe2 HS using photoluminescence (PL) spectroscopy. The intensities of the two peaks are essentially the same, and the energy difference is 22 meV, which is perfectly in line with the calculation result of density functional theory. Furthermore, the experience of variable excitation power also proves that the splitting of the IXs originates from the conduction band spin-splitting of MoSe2. The observation results provide a promising platform for further exploring the new physical properties and optoelectronic phenomena of TMD HS.

Keywords: density functional theory, heterostructure, photoluminescence, interlayer exciton, transitional metal dichalcogenides

References(52)

1

Okada, M.; Kutana, A.; Kureishi, Y.; Kobayashi, Y.; Saito, Y.; Saito, T.; Watanabe, K.; Taniguchi, T.; Gupta, S.; Miyata, Y. et al. Direct and indirect interlayer excitons in a van der waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 2018, 12, 2498–2505.

2

Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

3

Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

4

Sun, Z.; Beaumariage, J.; Cao, Q. R.; Watanabe, K.; Taniguchi, T.; Hunt, B. M.; Snoke, D. Observation of the interlayer exciton gases in WSe2-p: WSe2 heterostructures. ACS Photonics 2020, 7, 1622–1627.

5

Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172–1182.

6

Choi, C.; Huang, J. H.; Cheng, H. C.; Kim, H.; Vinod, A. K.; Bae, S. H.; Özçelik, V. O.; Grassi, R.; Chae, J.; Huang, S. W. et al. Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. npj 2D Mater. Appl. 2018, 2, 30.

7

Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

8

Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

9

Yu, J.; Kuang, X. F.; Li, J. Z.; Zhong, J. H.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

10

Liu, Y. P.; Zeng, C.; Zhong, J. H.; Ding, J. N.; Wang, Z. M.; Liu, Z. W. Spintronics in two-dimensional materials. Nano-Micro Lett. 2020, 12, 93.

11

Schaibley, J. R.; Yu, H. Y.; Clark, G.; Rivera, P.; Ross, J. S.; Seyler, K. L.; Yao, W.; Xu, X. D. Valleytronics in 2D materials. Nat. Rev. Mater. 2016, 1, 16055.

12

Shi, J. W.; Zhu, J. R.; Wu, X. X.; Zheng, B. Y.; Chen, J.; Sui, X. Y.; Zhang, S.; Shi, J.; Du, W. N.; Zhong, Y. G. et al. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater. 2020, 8, 2001147.

13

Massicotte, M.; Schmidt, P.; Vialla, F.; Schadler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.

14

Ma, Q.; Andersen, T. I.; Nair, N. L.; Gabor, N. M.; Massicotte, M.; Lui, C. H.; Young, A. F.; Fang, W. J.; Watanabe, K.; Taniguchi, T. et al. Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure. Nat. Phys. 2016, 12, 455–459.

15

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

16

Lukman, S.; Ding, L.; Xu, L.; Tao, Y.; Riis-Jensen, A. C.; Zhang, G.; Wu, Q. Y. S.; Yang, M.; Luo, S.; Hsu, C. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 2020, 15, 675–682.

17

Molina-Mendoza, A. J.; Giovanelli, E.; Paz, W. S.; Niño, M. A.; Island, J. O.; Evangeli, C.; Aballe, L.; Foerster, M.; Van Der Zant, H. S. J.; Rubio-Bollinger, G. et al. Franckeite as a naturally occurring van der Waals heterostructure. Nat. Commun. 2017, 8, 14409.

18

Paul, K. K.; Kim, J. H.; Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 2021, 3, 178–192.

19

Zhong, J. H.; Zeng, C.; Yu, J.; Cao, L. K.; Ding, J. N.; Liu, Z. W.; Liu, Y. P. Direct observation of enhanced performance in suspended ReS2 photodetectors. Opt. Express 2021, 29, 3567–3574.

20

Calman, E. V.; Fowler-Gerace, L. H.; Choksy, D. J.; Butov, L. V.; Nikonov, D. E.; Young, I. A.; Hu, S.; Mishchenko, A.; Geim, A. K. Indirect excitons and trions in MoSe2/WSe2 van der waals heterostructures. Nano Lett. 2020, 20, 1869–1875.

21

Ross, J. S.; Klement, P.; Jones, A. M.; Ghimire, N. J.; Yan, J. Q.; Mandrus, D. G.; Taniguchi, T.; Watanabe, K.; Kitamura, K.; Yao, W. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions. Nat. Nanotechnol. 2014, 9, 268–272.

22

Koperski, M.; Nogajewski, K.; Arora, A.; Cherkez, V.; Mallet, P.; Veuillen, J. Y.; Marcus, J.; Kossacki, P.; Potemski, M. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 2015, 10, 503–506.

23

Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 2014, 10, 343–350.

24

Miller, B.; Steinhoff, A.; Pano, B.; Klein, J.; Jahnke, F.; Holleitner, A.; Wurstbauer, U. Long-lived direct and indirect interlayer excitons in van der waals heterostructures. Nano Lett. 2017, 17, 5229–5237.

25

Jin, C. H.; Regan, E. C.; Yan, A. M.; Utama, M. I. B.; Wang, D. Q.; Zhao, S. H.; Qin, Y.; Yang, S. J.; Zheng, Z. R.; Shi, S. Y. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 2019, 567, 76–80.

26

Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

27

Yuan, L.; Zheng, B. Y.; Kunstmann, J.; Brumme, T.; Kuc, A. B.; Ma, C.; Deng, S. B.; Blach, D.; Pan, A. L.; Huang, L. B. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 2020, 19, 617–623.

28

Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

29

Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.

30

Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der waals heterostructure. ACS Nano 2014, 8, 12717–12724.

31

Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 2018, 18, 7651–7657.

32

Deilmann, T.; Thygesen, K. S. Interlayer trions in the MoS2/WS2 van der waals heterostructure. Nano Lett. 2018, 18, 1460–1465.

33

Chen, K.; Wan, X.; Wen, J. X.; Xie, W. G.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Electronic properties of MoS2–WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876.

34

Doan, M. H.; Jin, Y.; Adhikari, S.; Lee, S.; Zhao, J.; Lim, S. C.; Lee, Y. H. Charge transport in MoS2/WSe2 van der waals heterostructure with tunable inversion layer. ACS Nano 2017, 11, 3832–3840.

35

Zhu, X. Y.; Monahan, N. R.; Gong, Z. Z.; Zhu, H. M.; Williams, K. W.; Nelson, C. A. Charge transfer excitons at van der waals interfaces. J. Am. Chem. Soc. 2015, 137, 8313–8320.

36

Nagler, P.; Plechinger, G.; Ballottin, M. V.; Mitioglu, A.; Meier, S.; Paradiso, N.; Strunk, C.; Chernikov, A.; Christianen, P. C. M.; Schüller, C. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 2017, 4, 025112.

37

Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.

38

Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J. U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der waals heterostructures. ACS Nano 2017, 11, 4041–4050.

39

Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.

40

Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

41

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 2013, 4, 1474.

42

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

43

Li, C. C.; Gong, M.; Chen, X. D.; Li, S.; Zhao, B. W.; Dong, Y.; Guo, G. C.; Sun, F. W. Temperature dependent energy gap shifts of single color center in diamond based on modified Varshni equation. Diam. Relat. Mater. 2017, 74, 119–124.

44

Joshi, J.; Zhou, T.; Krylyuk, S.; Davydov, A. V.; Žutić, I.; Vora, P. M. Localized excitons in NbSe2-MoSe2 heterostructures. ACS Nano 2020, 14, 8528–8538.

45

Venanzi, T.; Arora, H.; Erbe, A.; Pashkin, A.; Winnerl, S.; Helm, M.; Schneider, H. Exciton localization in MoSe2 monolayers induced by adsorbed gas molecules. Appl. Phys. Lett. 2019, 114, 172106.

46

Rivera, P.; Schaibley, J. R.; Jones, A. M.; Ross, J. S.; Wu, S. F.; Aivazian, G.; Klement, P.; Seyler, K.; Clark, G.; Ghimire, N. J. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 2015, 6, 6242.

47

Hanbicki, A. T.; Chuang, H. J.; Rosenberger, M. R.; Hellberg, C. S.; Sivaram, S. V.; McCreary, K. M.; Mazin, I. I.; Jonker, B. T. Double indirect interlayer exciton in a MoSe2/WSe2 van der waals heterostructure. ACS Nano 2018, 12, 4719–4726.

48

Kormányos, A.; Zólyomi, V.; Drummond, N. D.; Burkard, G. Spin-orbit coupling, quantum dots, and qubits in monolayer transition metal dichalcogenides. Phys. Rev. X 2014, 4, 011034.

49

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

50

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

51

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

52

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2021
Revised: 23 June 2021
Accepted: 03 July 2021
Published: 12 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We are grateful for the support from the National Natural Science Foundation of China (No. 61775241), Hunan province key research and development project (No. 2019GK2233), the Hunan Science Fund for Distinguished Young Scholar (No. 2020JJ2059), Youth Innovation Team of Central South University (No. 2019012), Hunan Province Graduate Research and Innovation Project (No. CX20190177), and the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20180307151237242). Also, Y. P. L. acknowledges the support provided by the Central South University of the State Key Laboratory of High-Performance Complex Manufacturing Project (No. ZZYJKT2020–12). Z. W. L. thanks the funding support from the Australian Research Council (ARC Discovery Projects) (Nos. DP210103539 and DP180102976).

Return