Journal Home > Volume 15 , Issue 3

Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate back-energy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and three-photonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a three-dimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC.


menu
Abstract
Full text
Outline
About this article

Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals

Show Author's information Bettina Grauel1Christian Würth1Christian Homann3Lisa Krukewitt1,Elina Andresen1Janina Roik2Sebastian Recknagel2Markus Haase3( )Ute Resch-Genger1( )
Federal Institute for Materials Research and Testing (BAM), Division 1.2 Biophotonics, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
Federal Institute for Materials Research and Testing (BAM), Division 1.6 Inorganic Reference Materials, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
Institute of Chemistry of New Materials, Department Biology/Chemistry, University Osnabrueck, Barbarastr. 7, 49076 Osnabrueck, Germany
Present address: Department of Anesthesiology and Intensive Care Medicine, University Medical Center Rostock, Schillingallee 35, 18057 Rostock, Germany

Abstract

Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate back-energy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and three-photonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a three-dimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC.

Keywords: lifetime, upconversion luminescence, dopant concentration, core/shell nanoparticles, volume effect, surface quenching

References(67)

1

Zhou, J. J.; Leaño, J. L. Jr.; Liu, Z. Y.; Jin, D. Y.; Wong, K. L.; Liu, R. S.; Bünzli, J. C. G. Impact of lanthanide nanomaterials on photonic devices and smart applications. Small 2018, 14, 1801882.

2

Gai, S. L.; Li, C. X.; Yang, P. P.; Lin, J. Recent progress in rare earth micro/nanocrystals: Soft chemical synthesis, luminescent properties, and biomedical applications. Chem. Rev. 2014, 114, 2343–2389.

3

Zhang, Z. M.; Shikha, S.; Liu, J. L.; Zhang, J.; Mei, Q. S.; Zhang, Y. Upconversion nanoprobes: Recent advances in sensing applications. Anal. Chem. 2019, 91, 548–568.

4

Resch-Genger, U.; Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles-Part I: routes to brighter particles and quantitative spectroscopic studies. Anal. Bioanal. Chem. 2017, 409, 5855–5874.

5

Gu, B.; Zhang, Q. C. Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems. Adv. Sci. 2018, 5, 1700609.

6

Liu, Q.; Feng, W.; Li, F. Y. Water-soluble lanthanide upconversion nanophosphors: Synthesis and bioimaging applications in vivo. Coord. Chem. Rev. 2014, 273-274, 100.

7

Zhang, Y.; Wei, W.; Das, G. K.; Tan, T. T. Y. Engineering lanthanide-based materials for nanomedicine. J. Photochem.Photobiol C: Photochem. Rev. 2014, 20, 71–96.

8

Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core–shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713.

9

Gorris, H. H.; Resch-Genger, U. Perspectives and challenges of photon-upconversion nanoparticles-Part II: Bioanalytical applications. Anal. Bioanal. Chem. 2017, 409, 5875–5890.

10

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829.

11

Liu, Y. J.; Lu, Y. Q.; Yang, X. S.; Zheng, X. L.; Wen, S. H.; Wang, F.; Vidal, X.; Zhao, J. B.; Liu, D. M.; Zhou, Z. G. et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature 2017, 543, 229–233.

12

Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics-a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.

13

Fernandez-Bravo, A.; Yao, K. Y.; Barnard, E. S.; Borys, N. J.; Levy, E. S.; Tian, B. N.; Tajon, C. A.; Moretti, L.; Altoe, M. V.; Aloni, S. et al. Continuous-wave upconverting nanoparticle microlasers. Nat. Nanotech. 2018, 13, 572–577.

14

Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.

15

Kumar, P.; Singh, S.; Gupta, B. K. Future prospects of luminescent nanomaterial based security inks: From synthesis to anti-counterfeiting applications. Nanoscale 2016, 8, 14297–14340.

16

Shikha, S.; Salafi, T.; Cheng, J. T.; Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 2017, 46, 7054–7093.

17

Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.

18

Qin, X.; Xu, J. H.; Wu, Y. M.; Liu, X. G. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: A toolbox for emerging applications. ACS Cent. Sci. 2019, 5, 29–42.

19

Li, H.; Wang, X.; Li, X. L.; Zeng, S. J.; Chen, G. Y. Clearable shortwave-infrared-emitting NaErF4 nanoparticles for noninvasive dynamic vascular imaging. Chem. Mater. 2020, 32, 3365–3375.

20

Hemmer, E.; Benayas, A.; Légaré, F.; Vetrone, F. Exploiting the biological windows: Current perspectives on fluorescent bioprobes emitting above 1000 nm. Nanoscale Horiz. 2016, 1, 168–184.

21

Tu, L. P.; Liu, X. M.; Wu, F.; Zhang, H. Excitation energy migration dynamics in upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1331–1345.

22

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173.

23

Joseph, R. E.; Jiménez, C.; Hudry, D.; Gao, G. J.; Busko, D.; Biner, D.; Turshatov, A.; Krämer, K.; Richards, B. S.; Howard, I. A. Critical power density: A metric to compare the excitation power density dependence of photon upconversion in different inorganic host materials. J. Phys. Chem. A 2019, 123, 6799–6811.

24

Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020, 7, 1067–1081.

25

Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.

26

Wang, Z. J.; Meijerink, A. Concentration quenching in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306.

27

Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch-Genger, U.; Haase, M. NaYF4: Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769.

28

Rabouw, F. T.; Prins, P. T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R. G.; Meijerink, A. Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals. ACS Nano 2018, 12, 4812–4823.

29

Hu, Y. Q.; Shao, Q. Y.; Dong, Y.; Jiang, J. Q. Energy loss mechanism of upconversion core/shell nanocrystals. J. Phys. Chem. C 2019, 123, 22674–22679.

30

Su, Q. Q.; Han, S. Y.; Xie, X. J.; Zhu, H. M.; Chen, H. Y.; Chen, C. K.; Liu, R. S.; Chen, X. Y.; Wang, F.; Liu, X. G. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849–20857.

31

Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922–4928.

32

Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch-Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283–4294.

33

Boyer, J. C.; Van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

34

Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+. Chem. Mater. 2003, 15, 2737–2743.

35

Vetrone, F.; Boyer, J. C.; Capobianco, J. A.; Speghini, A.; Bettinelli, M. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals. J. Appl. Phys. 2004, 96, 661–667.

36

Martín-Rodríguez, R.; Rabouw, F. T.; Trevisani, M.; Bettinelli, M.; Meijerink, A. Upconversion dynamics in Er3+-doped Gd2O2S: influence of excitation power, Er3+ concentration, and defects. Adv. Opt. Mater. 2015, 3, 558–567.

37

Abel, K. A.; Boyer, J. C.; Andrei, C. M.; Van Veggel, F. C. J. M. Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J. Phys. Chem. Lett. 2011, 2, 185–189.

38

Johnson, N. J. J.; Van Veggel, F. C. J. M. Sodium lanthanide fluoride core–shell nanocrystals: A general perspective on epitaxial shell growth. Nano Res. 2013, 6, 547–561.

39

Johnson, N. J. J.; Van Veggel, F. C. J. M. Lanthanide-based heteroepitaxial core–shell nanostructures: Compressive versus tensile strain asymmetry. ACS Nano 2014, 8, 10517–10527.

40

Hudry, D.; Busko, D.; Popescu, R.; Gerthsen, D.; Abeykoon, A. M. M.; Kübel, C.; Bergfeldt, T.; Richards, B. S. Direct evidence of significant cation intermixing in upconverting core@shell nanocrystals: Toward a new crystallochemical model. Chem. Mater. 2017, 29, 9238–9246.

41

Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 2011, 10, 968–973.

42

Quintanilla, M.; Ren, F. Q.; Ma, D. L.; Vetrone, F. Light management in upconverting nanoparticles: Ultrasmall core/shell architectures to tune the emission color. ACS Photonics 2014, 1, 662–669.

43

Pilch, A.; Würth, C.; Kaiser, M.; Wawrzyńczyk, D.; Kurnatowska, M.; Arabasz, S.; Prorok, K.; Samoć, M.; Strek, W.; Resch-Genger, U. et al. Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core–shell β-NaYF4 nanoparticles by dopant distribution and spacing. Small 2017, 13, 1701635.

44

Huang, K.; Liu, H. C.; Kraft, M.; Shikha, S.; Zheng, X.; Ågren, H.; Würth, C.; Resch-Genger, U.; Zhang, Y. A protected excitation-energy reservoir for efficient upconversion luminescence. Nanoscale 2018, 10, 250–259.

45

Li, X. M.; Wang, R.; Zhang, F.; Zhao, D. Y. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett. 2014, 14, 3634–3639.

46

Li, X. M.; Shen, D. K.; Yang, J. P.; Yao, C.; Che, R. C.; Zhang, F.; Zhao, D. Y. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 2013, 25, 106–112.

47

Liu, J. F.; Fu, T. R.; Shi, C. L. Spatial energy transfer and migration model for upconversion dynamics in core–shell nanostructures. J. Phys. Chem. C 2019, 123, 9506–9515.

48

Wang, F.; Liu, X. G. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643.

49

Hossan, M. Y.; Hor, A.; Luu, Q.; Smith, S. J.; May, P. S.; Berry, M. T. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4: Yb3+, Er3+ core and core–shell nanocrystals. J. Phys. Chem. C 2017, 121, 16592–16606.

50

Berry, M. T.; May, P. S. Disputed mechanism for NIR-to-Red upconversion luminescence in NaYF4: Yb3+, Er3+. J. Phys. Chem. A 2015, 119, 9805–9811.

51

Wang, F.; Liu, X. G. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989.

52

Liu, X. G.; Yan, C. H.; Capobianco, J. A. Photon upconversion nanomaterials. Chem. Soc. Rev. 2015, 44, 1299–1301.

53

Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360–6374.

54

Zuo, J.; Sun, D. P.; Tu, L. P.; Wu, Y. N.; Cao, Y. H.; Xue, B.; Zhang, Y. L.; Chang, Y. L.; Liu, X. M.; Kong, X. G.; Buma, W. J. et al. Precisely tailoring upconversion dynamics via energy migration in core–shell nanostructures. Angew. Chem., Int. Ed. 2018, 57, 3054–3058.

55

Park, J.; An, K. J.; Hwang, Y. S.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

56

Rinkel, T.; Raj, A. N.; Dühnen, S.; Haase, M. Synthesis of 10 nm β-NaYF4: Yb, Er/NaYF4 core/shell upconversion nanocrystals with 5 nm particle cores. Angew. Chem., Int. Ed. 2016, 55, 1164–1167.

57

Rinkel, T.; Nordmann, J.; Raj, A. N.; Haase, M. Ostwald-ripening and particle size focussing of sub-10 nm NaYF4 upconversion nanocrystals. Nanoscale 2014, 6, 14523–14530.

58

Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano- and micrometer-sized particles - measurements and simulations. Nanoscale 2017, 9, 10051–10058.

59

Anderson, R. B.; Smith, S. J.; May, P. S.; Berry, M. T. Revisiting the NIR-to-visible upconversion mechanism in β-NaYF4: Yb3+, Er3+. J. Phys. Chem. Lett. 2014, 5, 36–42.

60

Ledoux, G.; Amans, D.; Joubert, M. F.; Mahler, B.; Mishra, S.; Daniele, S.; Dujardin, C. Modeling energy migration for upconversion materials. J. Phys. Chem. C 2018, 122, 888–893.

61

Villanueva-Delgado, P.; Krämer, K. W.; Valiente, R. Simulating Energy Transfer and Upconversion in β-NaYF4: Yb3+, Tm3+. J. Phys. Chem. C 2015, 119, 23648–23657.

62

Pawlik, G.; Niczyj, J.; Noculak, A.; Radosz, W.; Podhorodecki, A. Multiband Monte Carlo modeling of upconversion emission in sub 10 nm β-NaGdF4: Yb3+, Er3+ nanocrystals—Effect of Yb3+ content. J. Chem. Phys. 2017, 146, 244111.

63

Renero-Lecuna, C.; Martín-Rodríguez, R.; Valiente, R.; González J.; Rodríguez F.; Krämer K. W.; Güdel H. U. Origin of the high upconversion green luminescence efficiency in β-NaYF4: 2%Er3+, 20%Yb3+. Chem. Mater. 2011, 23, 3442–3448.

64

Aebischer, A.; Hostettler, M.; Hauser, J.; Krämer, K.; Weber, T.; Güdel, H. U.; Bürgi, H. B. Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. Angew. Chem., Int. Ed. 2006, 45, 2802–2806.

65

Grzechnik, A.; Friese, K. Crystal structures and stability of NaLnF4 (Ln = La, Ce, Pr, Nd, Sm and Gd) studied with synchrotron single-crystal and powder diffraction. Dalton Trans. 2012, 41, 10258–10266.

66

Fischer, S.; Mehlenbacher, R. D.; Lay, A.; Siefe, C.; Alivisatos, A. P.; Dionne, J. A. Small alkaline-earth-based core/shell nanoparticles for efficient upconversion. Nano Lett. 2019, 19, 3878–3885.

67

Fischer, S.; Johnson, N. J. J.; Pichaandi, J.; Goldschmidt, J. C.; Van Veggel, F. C. J. M. Upconverting core–shell nanocrystals with high quantum yield under low irradiance: On the role of isotropic and thick shells. J. Appl. Phys. 2015, 118, 193105.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 February 2021
Revised: 01 July 2021
Accepted: 03 July 2021
Published: 28 August 2021
Issue date: March 2022

Copyright

© The Author (s) 2021

Acknowledgements

Acknowledgements

The authors gratefully acknowledge financial support from the German Science Foundation (DFG; Nos. RE 1203/18-1 and HA 1649/7-1). We thank Professor Th. Jüstel (FH Münster, Steinfurt) for providing the microcrystalline powder phosphors Yb-Bulk (NaYF4:Yb) and Er-Bulk (NaYF4:Er) and Dr. K. Krämer (University of Bern, Switzerland) for provision of the microcrystalline NaYF4:Yb UC phosphor.

Rights and permissions

Copyright: 2021 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return