Journal Home > Volume 14 , Issue 10

The development of efficient three-dimensional cell imaging technology is a necessary means to study cell composition and structure, especially to track and monitor the phagocytosis process of nanoparticles by cells. Herein, we prepared a MoO2 hollow nanosphere with a strong surface plasmon resonance effect in the visible light region, which exhibited an excellent surface enhanced Raman scattering effect. When the 4-mercaptobenzoic acid (4-MBA) molecules are modified, it can be efficiently used as Raman probe molecules to perform clear three-dimensional cell imaging. No matter when the nanoparticles are located inside the cell, outside the cell or partly inside the cell, they all can be clearly presented by this enhanced Raman probe molecule. These results provide a rapid and accurate method for three-dimensional imaging of cells, especially for tracking the phagocytosis of nanoparticles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Determine the position of nanoparticles in cells by using surface-enhanced Raman three-dimensional imaging

Show Author's information Wei LiuWentao LiYahui LiJunfang LiHua BaiMingqiang ZouGuangcheng Xi( )
Institute of Industrial and Consumer Product Safety,Chinese Academy of Inspection and Quarantine,Beijing,100176,China;

Abstract

The development of efficient three-dimensional cell imaging technology is a necessary means to study cell composition and structure, especially to track and monitor the phagocytosis process of nanoparticles by cells. Herein, we prepared a MoO2 hollow nanosphere with a strong surface plasmon resonance effect in the visible light region, which exhibited an excellent surface enhanced Raman scattering effect. When the 4-mercaptobenzoic acid (4-MBA) molecules are modified, it can be efficiently used as Raman probe molecules to perform clear three-dimensional cell imaging. No matter when the nanoparticles are located inside the cell, outside the cell or partly inside the cell, they all can be clearly presented by this enhanced Raman probe molecule. These results provide a rapid and accurate method for three-dimensional imaging of cells, especially for tracking the phagocytosis of nanoparticles.

Keywords: cell imaging, hollow nanospheres, surface enhanced Raman spectroscopy (SERS), MoO2, three-dimensional imaging

References(37)

1

Wegner, K. D.; Hildebrandt, N. Quantum dots: Bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 2015, 44, 4792-4834.

2

Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2016.

3

Hötzer, B.; Medintz, I. L.; Hildebrandt, N. Fluorescence in nano-biotechnology: Sophisticated fluorophores for novel applications. Small 2012, 8, 2297-2326.

4

Morgner, F.; Geißler, D.; Stufler, S.; Butlin, N. G.; Löhmannsröben, H. G.; Hildebrandt, N. A quantum-dot-based molecular ruler for multiplexed optical analysis. Angew. Chem. , Int. Ed. 2010, 49, 7570-7574.

5

Wegner, K. D.; Morgner, F.; Oh, E.; Goswami, R.; Susumu, K.; Stewart, M. H.; Medintz, I. L.; Hildebrandt, N. Three-dimensional solution-phase förster resonance energy transfer analysis of nanomolar quantum dot bioconjugates with subnanometer resolution. Chem. Mater. 2014, 26, 4299-4312.

6

Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-Ⅱ window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789-14804.

7

Yezhelyev, M. V.; Qi, L. F.; O'Regan, R. M.; Nie, S. M.; Gao, X. H. Proton-sponge coated quantum dots for siRNA delivery and intracellular imaging. J. Am. Chem. Soc. 2008, 130, 9006-9012.

8

Anderson, N.; Anger, P.; Hartschuh, A.; Novotny, L. Subsurface Raman imaging with nanoscale resolution. Nano Lett. 2006, 6, 744-749.

9

Song, Z. L.; Chen, Z.; Bian, X.; Zhou, L. Y.; Ding, D.; Liang, H.; Zou, Y. X.; Wang, S. S.; Chen, L.; Yang, C. et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging. J. Am. Chem. Soc. 2014, 136, 13558-13561.

10

Wang, X.; Liu, G. K.; Xu, M. X.; Ren, B.; Tian, Z. Q. Development of weak signal recognition and an extraction algorithm for Raman imaging. Anal. Chem. 2019, 91, 12909-12916.

11

Yamakoshi, H.; Dodo, K.; Palonpon, A.; Ando, J.; Fujita, K.; Kawata, S.; Sodeoka, M. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells. J. Am. Chem. Soc. 2012, 134, 20681-20689.

12

He, Z.; Han, Z. H.; Kizer, M.; Linhardt, R. J.; Wang, X.; Sinyukov, A. M.; Wang, J. Z.; Deckert, V.; Sokolov, A. V.; Hu, J. et al. Tip-enhanced Raman imaging of single-stranded DNA with single base resolution. J. Am. Chem. Soc. 2019, 141, 753-757.

13

Palonpon, A. F.; Ando, J.; Yamakoshi, H.; Dodo, K.; Sodeoka, M.; Kawata, S.; Fujita, K. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 2013, 8, 677-692.

14

Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J. Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37, 898-911.

15

Hong, G. S.; Diao, S.; Antaris, A. L.; Dai, H. J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015, 115, 10816-10906.

16

Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901-986.

17

Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946-4980.

18

Kong, L. B.; Navas-Moreno, M.; Chan, J. W. Fast confocal Raman imaging using a 2-D multifocal array for parallel hyperspectral detection. Anal. Chem. 2016, 88, 1281-1285.

19

Jokerst, J. V.; Cole, A. J.; Van de Sompel, D.; Gambhir, S. S. Gold nanorods for ovarian cancer detection with photoacoustic imaging and resection guidance via Raman imaging in living mice. ACS Nano 2012, 6, 10366-10377.

20

Huang, Y. M.; Swarup, V. P.; Bishnoi, S. W. Rapid Raman imaging of stable, functionalized nanoshells in mammalian cell cultures. Nano Lett. 2009, 9, 2914-2920.

21

Kang, J. W.; Nguyen, F. T.; Lue, N.; Dasari, R. R.; Heller, D. A. Measuring uptake dynamics of multiple identifiable carbon nanotube species via high-speed confocal Raman imaging of live cells. Nano Lett. 2012, 12, 6170-6174.

22

Zhang, W.; Dong, Z. Q.; Zhu, L.; Hou, Y. Z.; Qiu, Y. P. Direct observation of the release of nanoplastics from commercially recycled plastics with correlative Raman imaging and scanning electron microscopy. ACS Nano 2020, 14, 7920-7926.

23

Bocklitz, T. W.; Crecelius, A. C.; Matthäus, C.; Tarcea, N.; von Eggeling, F.; Schmitt, M.; Schubert, U. S.; Popp, J. Deeper under-standing of biological tissue: Quantitative correlation of MALDI- TOF and Raman imaging. Anal. Chem. 2013, 85, 10829-10834.

24

Clemente, I.; Aznar, M.; Nerín, C. Raman imaging spectroscopy as a tool to investigate the cell damage on Aspergillus ochraceus caused by an antimicrobial packaging containing benzyl isothiocyanate. Anal. Chem. 2016, 88, 4772-4779.

25

Ishigaki, M.; Meksiarun, P.; Kitahama, Y.; Zhang, L. L.; Hashimoto, H.; Genkawa, T.; Ozaki, Y. Unveiling the aggregation of lycopene in vitro and in vivo: UV-Vis, resonance Raman, and Raman imaging studies. J. Phys. Chem. B 2017, 121, 8046-8057.

26

Pozzi, E. A.; Sonntag, M. D.; Jiang, N.; Klingsporn, J. M.; Hersam, M. C.; Van Duyne, R. P. Tip-enhanced Raman imaging: An emergent tool for probing biology at the nanoscale. ACS Nano 2013, 7, 885-888.

27

Ertsgaard, C. T.; Wittenberg, N. J.; Klemme, D. J.; Barik, A.; Shih, W. C.; Oh, S. H. Integrated nanogap platform for sub-volt dielectrophoretic trapping and real-time Raman imaging of biological nanoparticles. Nano Lett. 2018, 18, 5946-5953.

28

Karanja, C. W.; Hong, W. L.; Younis, W.; Eldesouky, H. E.; Seleem, M. N.; Cheng, J. X. Stimulated Raman imaging reveals aberrant lipogenesis as a metabolic marker for azole-resistant Candida albicans. Anal. Chem. 2017, 89, 9822-9829.

29

Toda, S.; Yanagita, N.; Jokar, E.; Diau, E. W. G.; Shigeto, S. Inter- and intragrain inhomogeneity in 2D perovskite thin films revealed by relative grain orientation imaging using low-frequency polarized Raman microspectroscopy. J. Phys. Chem. Lett. 2020, 11, 3871-3876.

30

Arzumanyan, G. M.; Doroshkevich, N. V.; Mamatkulov, K. Z.; Shashkov, S. N.; Zinovev, E. V.; Vlasov, A. V.; Round, E. S.; Gordeliy, V. I. Highly sensitive coherent anti-stokes Raman scattering imaging of protein crystals. J. Am. Chem. Soc. 2016, 138, 13457-13460.

31

Liu, H. L.; Yang, Z. L.; Meng, L. Y.; Sun, Y. D.; Wang, J.; Yang, L. B.; Liu, J. H.; Tian, Z. Q. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J. Am. Chem. Soc. 2014, 136, 5332-5341.

32

Zhang, Y. Q.; Gu, Y. Q.; He, J.; Thackray, B. D.; Ye, J. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat. Commun. 2019, 10, 3905.

33

Wang, X.; Huang, S. C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253-271.

34

Harmsen, S.; Wall, M. A.; Huang, R. M.; Kircher, M. F. Cancer imaging using surface-enhanced resonance Raman scattering nanoparticles. Nat. Protoc. 2017, 12, 1400-1414.

35

Zhang, Q. Q.; Li, X. S.; Ma, Q.; Zhang, Q.; Bai, H.; Yi, W. C.; Liu, J. Y.; Han, J.; Xi, G. C. A metallic molybdenum dioxide with high stability for surface enhanced Raman spectroscopy. Nat. Commun. 2017, 8, 14903.

36

Liu, W.; Li, X. S.; Li, W. T.; Zhang, Q. Q.; Bai, H.; Li, J. F.; Xi, G. C. Highly stable molybdenum dioxide nanoparticles with strong Plasmon resonance are promising in photothermal cancer therapy. Biomaterials 2018, 163, 43-54.

37

Zhu, Y. P.; El-Demellawi, J. K.; Yin, J.; Lopatin, S.; Lei, Y. J.; Liu, Z. X.; Miao, X. H.; Mohammed, O. F.; Alshareef, H. N. Unprecedented surface Plasmon modes in monoclinic MoO2 nanostructures. Adv. Mater. 2020, 32, 1908392.

File
12274_2021_3726_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 March 2021
Revised: 25 June 2021
Accepted: 01 July 2021
Published: 09 July 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work received financial support from the Science Foundation of Chinese Academy of Inspection and Quarantine (No. 2017JK045) and the National Key Research and Development Program of China (No. 2017YFF0210003).

Return