Journal Home > Volume 15 , Issue 4

Engineering of defects in semiconductors provides an effective protocol for improving photocatalytic N2 conversion efficiency. This review focuses on the state-of-the-art progress in defect engineering of photocatalysts for the N2 reduction toward ammonia. The basic principles and mechanisms of thermal catalyzed and photon-induced N2 reduction are first concisely recapped, including relevant properties of the N2 molecule, reaction pathways, and NH3 quantification methods. Subsequently, defect classification, synthesis strategies, and identification techniques are compendiously summarized. Advances of in situ characterization techniques for monitoring defect state during the N2 reduction process are also described. Especially, various surface defect strategies and their critical roles in improving the N2 photoreduction performance are highlighted, including surface vacancies (i.e., anionic vacancies and cationic vacancies), heteroatom doping (i.e., metal element doping and nonmetal element doping), and atomically defined surface sites. Finally, future opportunities and challenges as well as perspectives on further development of defect-engineered photocatalysts for the nitrogen reduction to ammonia are presented. It is expected that this review can provide a profound guidance for more specialized design of defect-engineered catalysts with high activity and stability for nitrogen photochemical fixation.


menu
Abstract
Full text
Outline
About this article

Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts

Show Author's information Huidong Shen1Mengmeng Yang1Leiduan Hao1Jinrui Wang1Jennifer Strunk2( )Zhenyu Sun1( )
State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Leibniz Institute for Catalysis at the University of Rostock, Rostock 18059, Germany

Abstract

Engineering of defects in semiconductors provides an effective protocol for improving photocatalytic N2 conversion efficiency. This review focuses on the state-of-the-art progress in defect engineering of photocatalysts for the N2 reduction toward ammonia. The basic principles and mechanisms of thermal catalyzed and photon-induced N2 reduction are first concisely recapped, including relevant properties of the N2 molecule, reaction pathways, and NH3 quantification methods. Subsequently, defect classification, synthesis strategies, and identification techniques are compendiously summarized. Advances of in situ characterization techniques for monitoring defect state during the N2 reduction process are also described. Especially, various surface defect strategies and their critical roles in improving the N2 photoreduction performance are highlighted, including surface vacancies (i.e., anionic vacancies and cationic vacancies), heteroatom doping (i.e., metal element doping and nonmetal element doping), and atomically defined surface sites. Finally, future opportunities and challenges as well as perspectives on further development of defect-engineered photocatalysts for the nitrogen reduction to ammonia are presented. It is expected that this review can provide a profound guidance for more specialized design of defect-engineered catalysts with high activity and stability for nitrogen photochemical fixation.

Keywords: photocatalysis, nitrogen reduction, ammonia synthesis, defect engineering

References(332)

1

Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel–driven nitrogen transformations. Science 2018, 360, eaar6611.

2

Medford, A. J.; Hatzell, M. C. Photon-driven nitrogen fixation: Current progress, thermodynamic considerations, and future outlook. ACS Catal. 2017, 7, 2624–2643.

3

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

4

Hoffman, B. M.; Lukoyanov, D.; Yang, Z. Y.; Dean, D. R.; Seefeldt, L. C. Mechanism of nitrogen fixation by nitrogenase: The next stage. Chem. Rev. 2014, 114, 4041–4062.

5

Choi, J.; Suryanto, B. H. R.; Wang, D. B.; Du, H. L.; Hodgetts, R. Y.; Ferrero Vallana, F. M.; MacFarlane, D. R.; Simonov, A. N. Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nat. Commun. 2020, 11, 5546.

6

Service, R. F. Liquid sunshine. Science 2018, 361, 120–123.

7

Guo, J. P.; Chen, P. Catalyst: NH3 as an energy carrier. Chem 2017, 3, 709–712.

8

Chen, G. F.; Cao, X. R.; Wu, S. Q.; Zeng, X. Y.; Ding, L. X.; Zhu, M.; Wang, H. H. Ammonia electrosynthesis with high selectivity under ambient conditions via a Li+ incorporation strategy. J. Am. Chem. Soc. 2017, 139, 9771–9774.

9

Iwamoto, M.; Akiyama, M.; Aihara, K.; Deguchi, T. Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2. ACS Catal. 2017, 7, 6924–6929.

10

Singh, A. R.; Rohr, B. A.; Schwalbe, J. A.; Cargnello, M.; Chan, K.; Jaramillo, T. F.; Chorkendorff, I.; Nørskov, J. K. Electrochemical ammonia synthesis-the selectivity challenge. ACS Catal. 2017, 7, 706–709.

11

MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Ferrero Vallana, F. M.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

12

Leigh, G. J. Fixing nitrogen any which way. Science 1998, 279, 506–507.

13

Spatzal, T.; Aksoyoglu, M.; Zhang, L. M.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Evidence for interstitial carbon in nitrogenase femo cofactor. Science 2011, 334, 940.

14

Tanifuji, K.; Ohki, Y. Metal–sulfur compounds in N2 reduction and nitrogenase-related chemistry. Chem. Rev. 2020, 120, 5194–5251.

15

Chica, B.; Ruzicka, J.; Kallas, H.; Mulder, D. W.; Brown, K. A.; Peters, J. W.; Seefeldt, L. C.; Dukovic, G.; King, P. W. Defining intermediates of nitrogenase MoFe protein during N2 reduction under photochemical electron delivery from CdS quantum dots. J. Am. Chem. Soc. 2020, 142, 14324–14330.

16

Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y. L.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. X-ray emission spectroscopy evidences a central carbon in the nitrogenase iron-molybdenum cofactor. Science 2011, 334, 974–977.

17

Rao, L.; Xu, X.; Adamo, C. Theoretical investigation on the role of the central carbon atom and close protein environment on the nitrogen reduction in Mo nitrogenase. ACS Catal. 2016, 6, 1567–1577.

18

Hu, Y. L.; Ribbe, M. W. Decoding the nitrogenase mechanism: The homologue approach. Acc. Chem. Res. 2010, 43, 475–484.

19

Brown, K. A.; Harris, D. F.; Wilker, M. B.; Rasmussen, A.; Khadka, N.; Hamby, H.; Keable, S.; Dukovic, G.; Peters, J. W.; Seefeldt, L. C. et al. Light-driven dinitrogen reduction catalyzed by a CdS: Nitrogenase MoFe protein biohybrid. Science 2016, 352, 448–450.

20

Wang, L.; Xia, M. K.; Wang, H.; Huang, K. F.; Qian, C. X.; Maravelias, C. T.; Ozin, G. A. Greening ammonia toward the solar ammonia refinery. Joule 2018, 2, 1055–1074.

21
Schlögl, R. Ammonia synthesis. In Handbook of Heterogeneous Catalysis. Ertl, G.; Knözinger, H.; Weitkamp, J., Eds.; Wiley: Weinheim, 2008; pp 2501–2575.https://doi.org/10.1002/9783527610044.hetcat0129
DOI
22

Kandemir, T.; Schuster, M. E.; Senyshyn, A.; Behrens, M.; Schlögl, R. The haber–bosch process revisited: On the real structure and stability of "ammonia iron" under working conditions. Angew. Chem. , Int. Ed. 2013, 52, 12723–12726.

23

Liu, H. Z. Ammonia synthesis catalyst 100 years: Practice, enlightenment and challenge. Chin. J. Catal. 2014, 35, 1619–1640.

24

Martín, A. J.; Shinagawa, T.; Pérez-Ramírez, J. Electrocatalytic reduction of nitrogen: From haber-bosch to ammonia artificial leaf. Chem 2019, 5, 263–283.

25

Smith, B. E. Nitrogenase reveals its inner secrets. Science 2002, 297, 1654–1655.

26

Wang, Q. R.; Guo, J. P.; Chen, P. Recent progress towards mild- condition ammonia synthesis. J. Energy Chem. 2019, 36, 25–36.

27

Shi, R.; Zhang, X. R.; Waterhouse, G. I. N.; Zhao, Y. X.; Zhang, T. R. The journey toward low temperature, low pressure catalytic nitrogen fixation. Adv. Energy Mater. 2020, 10, 2000659.

28
Zheng, J. Y.; Jiang, L.; Lyu, Y.; Jian, S. P.; Wang, S. Y. Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12192.https://doi.org/10.1002/eem2.12192
DOI
29

Xu, T.; Ma, B. Y.; Liang, J.; Yue, L. C.; Liu, Q.; Li, T. S.; Zhao, H. T.; Luo, Y. L.; Lu, S. Y.; Sun, X. P. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys. Chim. Sin. 2021, 37, 2009043.

30

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Zhao, P. Y.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Jin, Z. Review on photocatalytic and electrocatalytic artificial nitrogen fixation for ammonia synthesis at mild conditions: Advances, challenges and perspectives. Nano Res. 2019, 12, 1229–1249.

31

Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919–924.

32

Liang, X. Y.; Deng, X. X.; Guo, C.; Wu, C. M. L. Activity origin and design principles for atomic vanadium anchoring on phosphorene monolayer for nitrogen reduction reaction. Nano Res. 2020, 13, 2925–2932.

33

Li, R. G. Photocatalytic nitrogen fixation: An attractive approach for artificial photocatalysis. Chin. J. Catal. 2018, 39, 1180–1188.

34

Li, B. F.; Hu, Y. Z.; Shen, Z. W.; Ji, Z. Y.; Yao, L.; Zhang, S.; Zou, Y. T.; Tang, D. Y.; Qing, Y.; Wang, S. Q. et al. Photocatalysis driven by near-infrared light: Materials design and engineering for environmentally friendly photoreactions. ACS EST Eng. 2021, 1, 947–964.

35

Wang, S. Y.; Ichihara, F.; Pang, H.; Chen, H.; Ye, J. H. Nitrogen fixation reaction derived from nanostructured catalytic materials. Adv. Funct. Mater. 2018, 28, 1803309.

36

Zhu, D.; Zhang, L. H.; Ruther, R. E.; Hamers, R. J. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 2013, 12, 836–841.

37

Zhang, G. Q.; Sewell, C. D.; Zhang, P. X.; Mi, H. W.; Lin, Z. Q. Nanostructured photocatalysts for nitrogen fixation. Nano Energy 2020, 71, 104645.

38

Cheng, M.; Xiao, C.; Xie, Y. Photocatalytic nitrogen fixation: The role of defects in photocatalysts. J. Mater. Chem. A 2019, 7, 19616–19633.

39

Mao, C. L.; Wang, J. X.; Zou, Y. J.; Li, H.; Zhan, G. M.; Li, J.; Zhao, J. C.; Zhang, L. Z. Anion (O, N, C, and S) vacancies promoted photocatalytic nitrogen fixation. Green Chem. 2019, 21, 2852–2867.

40

Schrauzer, G. N.; Guth, T. D. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 1977, 99, 7189–7193.

41

Zhang, N.; Li, L. G.; Shao, Q.; Zhu, T.; Huang, X. Q.; Xiao, X. H. Fe-doped biocl nanosheets with light-switchable oxygen vacancies for photocatalytic nitrogen fixation. ACS Appl. Energy Mater. 2019, 2, 8394–8398.

42

Rong, X. S.; Chen, H. F.; Rong, J.; Zhang, X. Y.; Wei, J.; Liu, S.; Zhou, X. T.; Xu, J. C.; Qiu, F. X.; Wu, Z. R. An all-solid-state Z-scheme TiO2/ZnFe2O4 photocatalytic system for the N2 photofixation enhancement. Chem. Eng. J. 2019, 371, 286–293.

43

Nazemi, M.; El-Sayed, M. A. Plasmon-enhanced photo(electro)chemical nitrogen fixation under ambient conditions using visible light responsive hybrid hollow Au-Ag2O nanocages. Nano Energy 2019, 63, 103886.

44

Zhang, S.; Zhao, Y. X.; Shi, R.; Zhou, C.; Waterhouse, G. I. N.; Wang, Z.; Weng, Y. X.; Zhang, T. R. Sub-3 nm ultrafine Cu2O for visible light driven nitrogen fixation. Angew. Chem. , Int. Ed. 2021, 60, 2554–2560.

45

Huang, Y. W.; Zhu, Y. S.; Chen, S. J.; Xie, X. Q.; Wu, Z. J.; Zhang, N. Schottky junctions with Bi cocatalyst for taming aqueous phase N2 reduction toward enhanced solar ammonia production. Adv. Sci. 2021, 8, 2003626.

46

Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B: Environ. 2017, 200, 323–329.

47

Sultana, S.; Mansingh, S.; Parida, K. M. Phosphide protected FeS2 anchored oxygen defect oriented CeO2NS based ternary hybrid for electrocatalytic and photocatalytic N2 reduction to NH3. J. Mater. Chem. A 2019, 7, 9145–9153.

48

Wang, Z. H.; Hu, X.; Liu, Z. Z.; Zou, G. J.; Wang, G. N.; Zhang, K. Recent developments in polymeric carbon nitride-derived photocatalysts and electrocatalysts for nitrogen fixation. ACS Catal. 2019, 9, 10260–10278.

49

Liu, S. Z.; Wang, S. B.; Jiang, Y.; Zhao, Z. Q.; Jiang, G. Y.; Sun, Z. Y. Synthesis of Fe2O3 loaded porous g-C3N4 photocatalyst for photocatalytic reduction of dinitrogen to ammonia. Chem. Eng. J. 2019, 373, 572–579.

50

Qin, J. Z.; Hu, X.; Li, X. Y.; Yin, Z. F.; Liu, B. J.; Lam, K. H. 0D/2D AgInS2/mxene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2. Nano Energy 2019, 61, 27–35.

51

Wang, S.; Li, B.; Li, L.; Tian, Z. Q.; Zhang, Q. J.; Chen, L.; Zeng, X. C. Highly efficient N2 fixation catalysts: Transition-metal carbides M2C (MXenes). Nanoscale 2020, 12, 538–547.

52

Shiraishi, Y.; Shiota, S.; Kofuji, Y.; Hashimoto, M.; Chishiro, K.; Hirakawa, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Nitrogen fixation with water on carbon-nitride-based metal-free photocatalysts with 0.1% solar-to-ammonia energy conversion efficiency. ACS Appl. Energy Mater. 2018, 1, 4169–4177.

53

Li, M. Q.; Huang, H.; Low, J.; Gao, C.; Long, R.; Xiong, Y. J. Recent progress on electrocatalyst and photocatalyst design for nitrogen reduction. Small Methods 2019, 3, 1800388.

54

Zhou, P.; Chao, Y. G.; Lv, F.; Lai, J. P.; Wang, K.; Guo, S. J. Designing noble metal single-atom-loaded two-dimension photocatalyst for N2 and CO2 reduction via anion vacancy engineering. Sci. Bull. 2020, 65, 720–725.

55

Chen, X. Z.; Li, N.; Kong, Z. Z.; Ong, W. J.; Zhao, X. J. Photocatalytic fixation of nitrogen to ammonia: State-of-the-art advancements and future prospects. Mater. Horiz. 2018, 5, 9–27.

56

Oshikiri, T.; Ueno, K.; Misawa, H. Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. , Int. Ed. 2014, 53, 9802–9805.

57

Xiong, J.; Song, P.; Di, J.; Li, H. M. Atomic-level active sites steering in ultrathin photocatalysts to trigger high efficiency nitrogen fixation. Chem. Eng. J. 2020, 402, 126208.

58

Nowotny, J.; Alim, M. A.; Bak, T.; Idris, M. A.; Ionescu, M.; Prince, K.; Sahdan, M. Z.; Sopian, K.; Mat Teridi, M. A.; Sigmund, W. Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev. 2015, 44, 8424–8442.

59

Yan, D. F.; Li, Y. X.; Huo, J.; Chen, R.; Dai, L. M.; Wang, S. Y. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions. Adv. Mater. 2017, 29, 1606459.

60

Tong, X. J.; Cao, X.; Han, T.; Cheong, W. C.; Lin, R.; Chen, Z.; Wang, D. S.; Chen, C.; Peng, Q.; Li, Y. D. Convenient fabrication of BiOBr ultrathin nanosheets with rich oxygen vacancies for photocatalytic selective oxidation of secondary amines. Nano Res. 2019, 12, 1625–1630.

61

Tan, X. N.; Zhang, J. L.; Tan, D. X.; Shi, J. B.; Cheng, X. Y.; Zhang, F. Y.; Liu, L. F.; Zhang, B. X.; Su, Z. Z.; Han, B. X. Ionic liquids produce heteroatom-doped Pt/TiO2 nanocrystals for efficient photo­catalytic hydrogen production. Nano Res. 2019, 12, 1967–1972.

62

Fugate, E. A.; Biswas, S.; Clement, M. C.; Kim, M.; Kim, D.; Asthagiri, A.; Baker, L. R. The role of phase impurities and lattice defects on the electron dynamics and photochemistry of CuFeO2 solar photocathodes. Nano Res. 2019, 12, 2390–2399.

63

Li, H.; Li, W. J.; Li, W.; Chen, M. F.; Snyders, R.; Bittencourt, C.; Yuan, Z. H. Engineering crystal phase of polytypic CuInS2 nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 2020, 13, 583–590.

64

Shi, Q. Q.; Qin, Z. X.; Yu, C. L.; Waheed, A.; Xu, H.; Gao, Y.; Abroshan, H.; Li, G. Experimental and mechanistic understanding of photo-oxidation of methanol catalyzed by CuO/TiO2-spindle nanocomposite: Oxygen vacancy engineering. Nano Res. 2020, 13, 939–946.

65

Li, H.; Mao, C. L.; Shang, H.; Yang, Z. P.; Ai, Z. H.; Zhang, L. Z. New opportunities for efficient N2 fixation by nanosheet photocatalysts. Nanoscale 2018, 10, 15429–15435.

66

Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by mo doping: A strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434–9443.

67

Hirakawa, H.; Hashimoto, M.; Shiraishi, Y.; Hirai, T. Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 2017, 139, 10929–10936.

68

Wang, Z.; Fan, C. C.; Shen, Z. X.; Hua, C. Q.; Hu, Q. F.; Sheng, F.; Lu, Y. H.; Fang, H. Y.; Qiu, Z. Z.; Lu, J. et al. Defects controlled hole doping and multivalley transport in snse single crystals. Nat. Commun. 2018, 9, 47.

69

Liu, Z. C.; Huang, T.; Chang, H. H.; Wang, F. X.; Wen, J.; Sun, H. D.; Hossain, M.; Xie, Q. J.; Zhao, Y.; Wu, Y. P. Computational design of single mo atom anchored defective boron phosphide monolayer as a high-performance electrocatalyst for the nitrogen reduction reaction. Energy Environ. Mater. 2021, 4, 255–262.

70

Gao, L. L.; Tang, C. Y.; Liu, J. C.; He, L. L.; Wang, H. B.; Ke, Z. J.; Li, W. Q.; Jiang, C. Z.; He, D.; Cheng, L. et al. Oxygen vacancy- induced electron density tuning of Fe3O4 for enhanced oxygen evolution catalysis. Energy Environ. Mater., 2021, 4, 392–398.

71

Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering: A versatile tool for tuning the activation of key molecules in photocatalytic reactions. J. Energy Chem. 2019, 37, 43–57.

72

Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, S.; Zhang, T. R. Defect engineering in photocatalytic nitrogen fixation. ACS Catal. 2019, 9, 9739–9750.

73

Kitano, M.; Inoue, Y.; Yamazaki, Y.; Hayashi, F.; Kanbara, S.; Matsuishi, S.; Yokoyama, T.; Kim, S. W.; Hara, M.; Hosono, H. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 2012, 4, 934–940.

74

Hao, Q.; Liu, C. W.; Jia, G. H.; Wang, Y.; Arandiyan, H.; Wei, W.; Ni, B. J. Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: State of the art and future prospects. Mater. Horiz. 2020, 7, 1014–1029.

75

Roberts, M. W. Development of the industrial relevance of catalysis and its physiochemical basis (1860–1940). Catal. Lett. 2000, 67, 5–13.

76

Strongin, D. R.; Somorjai, G. A. The effects of potassium on ammonia synthesis over iron single-crystal surfaces. J. Catal. 1988, 109, 51–60.

77

Hinrichsen, O.; Rosowski, F.; Muhler, M.; Ertl, G. The microkinetics of ammonia synthesis catalyzed by cesium-promoted supported ruthenium. Chem. Eng. Sci. 1996, 51, 1683–1690.

78

Dahl, S.; Logadottir, A.; Egeberg, R. C.; Larsen, J. H.; Chorkendorff, I.; Törnqvist, E.; Nørskov, J. K. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 1999, 83, 1814–1817.

79

Dahl, S.; Törnqvist, E.; Jacobsen, C. J. H. Dissociative adsorption of dinitrogen on a multipromoted iron-based ammonia synthesis catalyst: Linking properties of catalysts and single-crystal surfaces. J. Catal. 2001, 198, 97–102.

80

Shen, H. D.; Peppel, T.; Strunk, J.; Sun, Z. Y. Photocatalytic reduction of CO2 by metal-free-based materials: Recent advances and future perspective. Sol. RRL 2020, 4, 1900546.

81

Li, J.; Li, H.; Zhan, G. M.; Zhang, L. Z. Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 2017, 50, 112–121.

82

Chen, X.; Li, J. Y.; Tang, Z. R.; Xu, Y. J. Surface-defect-engineered photocatalyst for nitrogen fixation into value-added chemical feedstocks. Catal. Sci. Technol. 2020, 10, 6098–6110.

83

Huang, Y. W.; Zhang, N.; Wu, Z. J.; Xie, X. Q. Artificial nitrogen fixation over bismuth-based photocatalysts: Fundamentals and future perspectives. J. Mater. Chem. A 2020, 8, 4978–4995.

84

Huang, T.; Pan, S. G.; Shi, L. L.; Yu, A. P.; Wang, X.; Fu, Y. S. Hollow porous prismatic graphitic carbon nitride with nitrogen vacancies and oxygen doping: A high-performance visible light-driven catalyst for nitrogen fixation. Nanoscale 2020, 12, 1833–1841.

85

Zhang, J. N.; Hu, W. P.; Cao, S.; Piao, L. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Res. 2020, 13, 2313–2322.

86

Jiao, X. C.; Zheng, K.; Liang, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604.

87

Li, H.; Li, J.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Oxygen vacancy- mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angew. Chem. , Int. Ed. 2018, 57, 122–138.

88

van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

89

Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.

90

Hu, C. Y.; Chen, X.; Jin, J. B.; Han, Y.; Chen, S. M.; Ju, H. X.; Cai, J.; Qiu, Y. R.; Gao, C.; Wang, C. M. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 2019, 141, 7807–7814.

91

Lukoyanov, D.; Dikanov, S. A.; Yang, Z. Y.; Barney, B. M.; Samoilova, R. I.; Narasimhulu, K. V.; Dean, D. R.; Seefeldt, L. C.; Hoffman, B. M. Endor/hyscore studies of the common intermediate trapped during nitrogenase reduction of N2H2, CH3N2H, and N2H4 support an alternating reaction pathway for N2 reduction. J. Am. Chem. Soc. 2011, 133, 11655–11664.

92

Shipman, M. A.; Symes, M. D. Recent progress towards the electrosynthesis of ammonia from sustainable resources. Catal. Today 2017, 286, 57–68.

93

Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem. , Int. Ed. 2018, 57, 7610–7627.

94

Li, X. M.; Sun, X.; Zhang, L.; Sun, S. M.; Wang, W. Z. Efficient photocatalytic fixation of N2 by KOH-treated g-C3N4. J. Mater. Chem. A 2018, 6, 3005–3011.

95

Zhao, W. R.; Xi, H. P.; Zhang, M.; Li, Y. J.; Chen, J. S.; Zhang, J.; Zhu, X. Enhanced quantum yield of nitrogen fixation for hydrogen storage with in situ-formed carbonaceous radicals. Chem. Commun. 2015, 51, 4785–4788.

96

Guo, Y. Z.; Yang, J. H.; Wu, D. H.; Bai, H. Y.; Yang, Z.; Wang, J. F.; Yang, B. C. Au nanoparticle-embedded, nitrogen-deficient hollow mesoporous carbon nitride spheres for nitrogen photofixation. J. Mater. Chem. A 2020, 8, 16218–16231.

97

Cao, S. H.; Chen, H.; Jiang, F.; Wang, X. Nitrogen photofixation by ultrathin amine-functionalized graphitic carbon nitride nanosheets as a gaseous product from thermal polymerization of urea. Appl. Catal. B: Environ. 2018, 224, 222–229.

98

Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.; Rajh, T.; Gray, K. A.; He, H. Y.; Zapol, P. Role of water and carbonates in photocatalytic transformation of CO2 to CH4 on titania. J. Am. Chem. Soc. 2011, 133, 3964–3971.

99

Zhao, Y. X.; Shi, R.; Bian, X. A. N.; Zhou, C.; Zhao, Y. F.; Zhang, S.; Wu, F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H. et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Adv. Sci. 2019, 6, 1802109.

100

Gao, X.; Wen, Y. J.; Qu, D.; An, L.; Luan, S. L.; Jiang, W. S.; Zong, X. P.; Liu, X. Y.; Sun, Z. C. Interference effect of alcohol on nessler's reagent in photocatalytic nitrogen fixation. ACS Sustain. Chem. Eng. 2018, 6, 5342–5348.

101

Yuan, S. J.; Chen, J. J.; Lin, Z. Q.; Li, W. W.; Sheng, G. P.; Yu, H. Q. Nitrate formation from atmospheric nitrogen and oxygen photocatalysed by nano-sized titanium dioxide. Nat. Commun. 2013, 4, 2249.

102

Liu, Y. W.; Cheng, M.; He, Z. H.; Gu, B. C.; Xiao, C.; Zhou, T. F.; Guo, Z. P.; Liu, J. D.; He, H. Y.; Ye, B. J. et al. Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem. , Int. Ed. 2019, 58, 731–735.

103

Shiraishi, Y.; Hashimoto, M.; Chishiro, K.; Moriyama, K.; Tanaka, S.; Hirai, T. Photocatalytic dinitrogen fixation with water on bismuth oxychloride in chloride solutions for solar-to-chemical energy conversion. J. Am. Chem. Soc. 2020, 142, 7574–7583.

104

Ren, W. J.; Mei, Z. W.; Zheng, S. S.; Li, S. N.; Zhu, Y. M.; Zheng, J. X.; Lin, Y.; Chen, H. B.; Gu, M.; Pan, F. et al. Wavelength- dependent solar N2 fixation into ammonia and nitrate in pure water. Research 2020, 2020, 3750314.

105

Yang, J. H.; Bai, H. Y.; Guo, Y. Z.; Zhang, H.; Jiang, R. B.; Yang, B. C.; Wang, J. F.; Yu, J. C. Photodriven disproportionation of nitrogen and its change to reductive nitrogen photofixation. Angew. Chem. , Int. Ed. 2021, 60, 927–936.

106

George, S.; Pokhrel, S.; Ji, Z. X.; Henderson, B. L.; Xia, T.; Li, L. J.; Zink, J. I.; Nel, A. E.; Mädler, L. Role of Fe doping in tuning the band gap of TiO2 for the photo-oxidation-induced cytotoxicity paradigm. J. Am. Chem. Soc. 2011, 133, 11270–11278.

107

Teranishi, M.; Naya, S. I.; Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle- loaded titanium (Ⅳ) dioxide photocatalyst. J. Am. Chem. Soc. 2010, 132, 7850–7851.

108
Ran, M. X.; Cui, W.; Li, K. L.; Chen, L.; Zhang, Y. X.; Dong, F.; Sun, Y. J. Light-induced dynamic stability of oxygen vacancies in BiSbO4 for efficient photocatalytic formaldehyde degradation. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12176.https://doi.org/10.1002/eem2.12176
DOI
109

Shen, H. D.; Choi, C.; Masa, J.; Li, X.; Qiu, J. S.; Jung, Y.; Sun, Z. Y. Electrochemical ammonia synthesis: Mechanistic understanding and catalyst design. Chem, 2021, 7, 1708–1754.

110

Ivančič, I.; Degobbis, D. An optimal manual procedure for ammonia analysis in natural waters by the indophenol blue method. Water Res. 1984, 18, 1143–1147.

111

Yuen, S. H.; Pollard, A. G. Determination of nitrogen in agricultural materials by the nessler reagent. Ⅱ. —Micro-determinations in plant tissue and in soil extracts. J. Sci. Food Agric. 1954, 5, 364–369.

112

Nielander, A. C.; McEnaney, J. M.; Schwalbe, J. A.; Baker, J. G.; Blair, S. J.; Wang, L.; Pelton, J. G.; Andersen, S. Z.; Enemark- Rasmussen, K.; Čolić, V. et al. A versatile method for ammonia detection in a range of relevant electrolytes via direct nuclear magnetic resonance techniques. ACS Catal. 2019, 9, 5797–5802.

113

Zaffaroni, R.; Ripepi, D.; Middelkoop, J.; Mulder, F. M. Gas chromatographic method for in situ ammonia quantification at parts per billion levels. ACS Energy Lett. 2020, 5, 3773–3777.

114

Liu, Y. C.; Asset, T.; Chen, Y. C.; Murphy, E.; Potma, E. O.; Matanovic, I.; Fishman, D. A.; Atanassov, P. Facile all-optical method for in situ detection of low amounts of ammonia. iScience 2020, 23, 101757.

115

Duan, G. Y.; Ren, Y.; Tang, Y.; Sun, Y. Z.; Chen, Y. M.; Wan, P. Y.; Yang, X. J. Improving the reliability and accuracy of ammonia quantification in electro- and photochemical synthesis. ChemSusChem 2020, 13, 88–96.

116

Yang, C. C.; Yu, Y. H.; van der Linden, B.; Wu, J. C. S.; Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts: Fact or fiction? J. Am. Chem. Soc. 2010, 132, 8398–8406.

117

Moustakas, N. G.; Strunk, J. Photocatalytic CO2 reduction on TiO2-based materials under controlled reaction conditions: Systematic insights from a literature study. Chem. Eur. J. 2018, 24, 12739– 12746.

118

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

119

Greenlee, L. F.; Renner, J. N.; Foster, S. L. The use of controls for consistent and accurate measurements of electrocatalytic ammonia synthesis from dinitrogen. ACS Catal. 2018, 8, 7820–7827.

120

Minteer, S. D.; Christopher, P.; Linic, S. Recent developments in nitrogen reduction catalysts: A virtual issue. ACS Energy Lett. 2019, 4, 163–166.

121

Xu, H. C.; Wang, Y.; Dong, X. L.; Zheng, N.; Ma, H. C.; Zhang, X. F. Fabrication of In2O3/In2S3 microsphere heterostructures for efficient and stable photocatalytic nitrogen fixation. Appl. Catal. B: Environ. 2019, 257, 117932.

122

Li, L. Q.; Tang, C.; Yao, D. Z.; Zheng, Y.; Qiao, S. Z. Electrochemical nitrogen reduction: Identification and elimination of contamination in electrolyte. ACS Energy Lett. 2019, 4, 2111–2116.

123

Comer, B. M.; Liu, Y. H.; Dixit, M. B.; Hatzell, K. B.; Ye, Y. F.; Crumlin, E. J.; Hatzell, M. C.; Medford, A. J. The role of adventitious carbon in photo-catalytic nitrogen fixation by titania. J. Am. Chem. Soc. 2018, 140, 15157–15160.

124

Li, D. H.; Li, J. J.; Jin, Q. W.; Ren, Z. P.; Sun, Y. W.; Zhang, R. Q.; Zhai, Y. P.; Liu, Y. G. Photocatalytic reduction of Cr (Ⅵ) on nano- sized red phosphorus under visible light irradiation. J. Colloid Interface Sci. 2019, 537, 256–261.

125

Cui, X. Y.; Tang, C.; Zhang, Q. A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

126

Battino, R.; Rettich, T. R.; Tominaga, T. The solubility of nitrogen and air in liquids. J. Phys. Chem. Ref. Data 1984, 13, 563–600.

127

Ali, M.; Zhou, F. L.; Chen, K.; Kotzur, C.; Xiao, C. L.; Bourgeois, L.; Zhang, X. Y.; MacFarlane, D. R. Nanostructured photo­electrochemical solar cell for nitrogen reduction using plasmon- enhanced black silicon. Nat. Commun. 2016, 7, 11335.

128

Tang, C.; Qiao, S. Z. How to explore ambient electrocatalytic nitrogen reduction reliably and insightfully. Chem. Soc. Rev. 2019, 48, 3166–3180.

129

Hu, L.; Xing, Z.; Feng, X. F. Understanding the electrocatalytic interface for ambient ammonia synthesis. ACS Energy Lett. 2020, 5, 430–436.

130

Feng, Y. L.; Zhang, Z. S.; Zhao, K.; Lin, S. L.; Li, H.; Gao, X. Photocatalytic nitrogen fixation: Oxygen vacancy modified novel micro-nanosheet structure Bi2O2CO3 with band gap engineering. J. Colloid Interface Sci. 2021, 583, 499–509.

131

Yan, D. F.; Li, H.; Chen, C.; Zou, Y. Q.; Wang, S. Y. Defect engineering strategies for nitrogen reduction reactions under ambient conditions. Small Methods 2019, 3, 1800331.

132

Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693–1706.

133

Bai, S.; Zhang, N.; Gao, C.; Xiong, Y. J. Defect engineering in photocatalytic materials. Nano Energy 2018, 53, 296–336.

134

Zhou, W.; Fu, H. G. Defect-mediated electron–hole separation in semiconductor photocatalysis. Inorg. Chem. Front. 2018, 5, 1240–1254.

135

Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.

136

Li, L. D.; Yan, J. Q.; Wang, T.; Zhao, Z. J.; Zhang, J.; Gong, J. L.; Guan, N. J. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881.

137

Mao, Y. S.; Wang, P. F.; Li, L. N.; Chen, Z. W.; Wang, H. T.; Li, Y.; Zhan, S. H. Unravelling the synergy between oxygen vacancies and oxygen substitution in BiO2−x for efficient molecular-oxygen activation. Angew. Chem. , Int. Ed. 2020, 59, 3685–3690.

138

Feng, H. F.; Xu, Z. F.; Ren, L.; Liu, C.; Zhuang, J. C.; Hu, Z. P.; Xu, X.; Chen, J.; Wang, J. O.; Hao, W. C. et al. Activating titania for efficient electrocatalysis by vacancy engineering. ACS Catal. 2018, 8, 4288–4293.

139

Beyerlein, I. J.; Demkowicz, M. J.; Misra, A.; Uberuaga, B. P. Defect-interface interactions. Prog. Mater. Sci. 2015, 74, 125–210.

140

Zhou, Y. G.; Zhang, Z. Z.; Fang, Z. W.; Qiu, M.; Ling, L.; Long, J. L.; Chen, L.; Tong, Y. C.; Su, W. Y.; Zhang, Y. F. et al. Defect engineering of metal–oxide interface for proximity of photooxidation and photoreduction. Proc. Natl. Acad. Sci. USA 2019, 116, 10232–10237.

141

Huang, Z. F.; Song, J. J.; Wang, X.; Pan, L.; Li, K.; Zhang, X. W.; Wang, L.; Zou, J. J. Switching charge transfer of C3N4/W18O49 from type-Ⅱ to z-scheme by interfacial band bending for highly efficient photocatalytic hydrogen evolution. Nano Energy 2017, 40, 308–316.

142

Gao, H. H.; Cao, R. Y.; Xu, X. T.; Zhang, S. W.; Yongshun, H.; Yang, H. C.; Deng, X. L.; Li, J. X. Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 245, 399–409.

143

Yan, X.; Liu, D. L.; Cao, H. H.; Hou, F.; Liang, J.; Dou, S. X. Nitrogen reduction to ammonia on atomic-scale active sites under mild conditions. Small Methods 2019, 3, 1800501.

144
Naliwajko, P.; Strunk, J. Photocatalysis–the heterogeneous catalysis perspective. In Heterogeneous Photocatalysis: From Fundamentals to Applications in Energy Conversion and Depollution. Strunk, J., Ed.; Wiley VCH: Weinheim, 2021; pp 384.https://doi.org/10.1002/9783527815296.ch5
DOI
145

Ran, L.; Hou, J. G.; Cao, S. Y.; Li, Z. W.; Zhang, Y. T.; Wu, Y. Z.; Zhang, B.; Zhai, P. L.; Sun, L. C. Defect engineering of photocatalysts for solar energy conversion. Sol. RRL 2020, 4, 1900487.

146

Huang, Y. M.; Yu, Y.; Yu, Y. F.; Zhang, B. Oxygen vacancy engineering in photocatalysis. Sol. RRL 2020, 4, 2000037.

147

Lan, M.; Zheng, N.; Dong, X. L.; Hua, C. H.; Ma, H. C.; Zhang, X. F. Bismuth-rich bismuth oxyiodide microspheres with abundant oxygen vacancies as an efficient photocatalyst for nitrogen fixation. Dalton Trans. 2020, 49, 9123–9129.

148

Hao, Y. C.; Dong, X. L.; Zhai, S. R.; Ma, H. C.; Wang, X. Y.; Zhang, X. F. Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chem. Eur. J. 2016, 22, 18722–18728.

149

Wang, J. P.; Lin, W.; Ran, Y.; Cui, J. Y.; Wang, L.; Yu, X. L.; Zhang, Y. H. Nanotubular TiO2 with remedied defects for photocatalytic nitrogen fixation. J. Phys. Chem. C 2020, 124, 1253–1259.

150

Wang, H.; Bu, Y. D.; Wu, G.; Zou, X. The promotion of the photocatalytic nitrogen fixation ability of nitrogen vacancy- embedded graphitic carbon nitride by replacing the corner-site carbon atom with phosphorus. Dalton Trans. 2019, 48, 11724–11731.

151

Wu, S. Q.; Chen, Z. Y.; Liu, K. D.; Yue, W. H.; Wang, L. Z.; Zhang, J. L. Chemisorption-induced and plasmon-promoted photofixation of nitrogen on gold-loaded carbon nitride nanosheets. ChemSusChem 2020, 13, 3455–3461.

152

Liu, D. L.; Wang, C. H.; Yu, Y. F.; Zhao, B. H.; Wang, W. C.; Du, Y. H.; Zhang, B. Understanding the nature of ammonia treatment to synthesize oxygen vacancy-enriched transition metal oxides. Chem 2019, 5, 376–389.

153

Ge, J. H.; Zhang, L.; Xu, J.; Liu, Y. J.; Jiang, D. C.; Du, P. W. Nitrogen photofixation on holey g-C3N4 nanosheets with carbon vacancies under visible-light irradiation. Chin. Chem. Lett. 2020, 31, 792–796.

154

Zhang, Y. Z.; Chen, X.; Zhang, S. Y.; Yin, L. F.; Yang, Y. Defective titanium dioxide nanobamboo arrays architecture for photocatalytic nitrogen fixation up to 780 nm. Chem. Eng. J. 2020, 401, 126033.

155

Yang, X. L.; Wang, S. Y.; Yang, N.; Zhou, W.; Wang, P.; Jiang, K.; Li, S.; Song, H.; Ding, X.; Chen, H. et al. Oxygen vacancies induced special CO2 adsorption modes on Bi2MoO6 for highly selective conversion to CH4. Appl. Catal. B: Environ. 2019, 259, 118088.

156

Zheng, J. Y.; Lyu, Y.; Wang, R. L.; Xie, C.; Zhou, H. J.; Jiang, S. P.; Wang, S. Y. Crystalline TiO2 protective layer with graded oxygen defects for efficient and stable silicon-based photocathode. Nat. Commun. 2018, 9, 3572.

157

Lei, F. C.; Sun, Y. F.; Liu, K. T.; Gao, S.; Liang, L.; Pan, B. C.; Xie, Y. Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 2014, 136, 6826–6829.

158

Yang, J. H.; Guo, Y. Z.; Jiang, R. B.; Qin, F.; Zhang, H.; Lu, W. Z.; Wang, J. F.; Yu, J. C. High-efficiency "working-in-tandem" nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 2018, 140, 8497–8508.

159

Wang, W. K.; Zhou, H. J.; Liu, Y. Y.; Zhang, S. B.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Formation of B–N–C coordination to stabilize the exposed active nitrogen atoms in g-C3N4 for dramatically enhanced photocatalytic ammonia synthesis performance. Small 2020, 16, 1906880.

160

Liang, C.; Niu, H. Y.; Guo, H.; Niu, C. G.; Huang, D. W.; Yang, Y. Y.; Liu, H. Y.; Shao, B. B.; Feng, H. P. Insight into photocatalytic nitrogen fixation on graphitic carbon nitride: Defect-dopant strategy of nitrogen defect and boron dopant. Chem. Eng. J. 2020, 396, 125395.

161

Zhao, Y. F.; Wang, E. D.; Jin, R. R. The effect of oxygen on the N2 photofixation ability over N vacancies embedded g-C3N4 prepared by dielectric barrier discharge plasma treatment. Diam. Relat. Mater. 2019, 94, 146–154.

162

Liu, M. X.; Wang, Y. C.; Kong, X. H.; Tan, L. D.; Li, L.; Cheng, S. B.; Botton, G.; Guo, H.; Mi, Z. T.; Li, C. J. Efficient nitrogen fixation catalyzed by gallium nitride nanowire using nitrogen and water. iScience 2019, 17, 208–216.

163

Li, Z.; Gu, G. Z.; Hu, S. Z.; Zou, X.; Wu, G. Promotion of activation ability of N vacancies to N2 molecules on sulfur-doped graphitic carbon nitride with outstanding photocatalytic nitrogen fixation ability. Chin. J. Catal. 2019, 40, 1178–1186.

164

Li, G.; Yang, W. Y.; Gao, S.; Shen, Q. Q.; Xue, J. B.; Chen, K. X.; Li, Q. Creation of rich oxygen vacancies in bismuth molybdate nanosheets to boost the photocatalytic nitrogen fixation performance under visible light illumination. Chem. Eng. J. 2021, 404, 127115.

165

Zhao, Y. X.; Zheng, L. R.; Shi, R.; Zhang, S.; Bian, X. G.; Wu, F.; Cao, X. Z.; Waterhouse, G. I. N.; Zhang, T. R. Alkali etching of layered double hydroxide nanosheets for enhanced photocatalytic N2 reduction to NH3. Adv. Energy Mater. 2020, 10, 2002199.

166

Zhao, Z. Q.; Hong, S.; Yan, C.; Choi, C.; Jung, Y.; Liu, Y.; Liu, S. Z.; Li, X.; Qiu, J. S.; Sun, Z. Y. Efficient visible-light driven N2 fixation over two-dimensional Sb/TiO2 composites. Chem. Commun. 2019, 55, 7171–7174.

167

Zhao, Z. Q.; Choi, C.; Hong, S.; Shen, H. D.; Yan, C.; Masa, J.; Jung, Y.; Qiu, J. S.; Sun, Z. Y. Surface-engineered oxidized two-dimensional Sb for efficient visible light-driven N2 fixation. Nano Energy 2020, 78, 105368.

168

Yuan, J. L.; Yi, X. Y.; Tang, Y. H.; Liu, M. J.; Liu, C. B. Efficient photocatalytic nitrogen fixation: Enhanced polarization, activation, and cleavage by asymmetrical electron donation to N≡N bond. Adv. Funct. Mater. 2020, 30, 1906983.

169

Zhao, Y. F.; Zhao, Y. X.; Waterhouse, G. I. N.; Zheng, L. R.; Cao, X. Z.; Teng, F.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. R. Layered-double-hydroxide nanosheets as efficient visible-light- driven photocatalysts for dinitrogen fixation. Adv. Mater. 2017, 29, 1703828.

170

Sun, B. T.; Liang, Z. Q.; Qian, Y. Y.; Xu, X. S.; Han, Y.; Tian, J. Sulfur vacancy-rich O-doped 1T-MoS2 nanosheets for exceptional photocatalytic nitrogen fixation over CdS. ACS Appl. Mater. Interfaces 2020, 12, 7257–7269.

171

Li, X. Z.; He, C. L.; Zuo, S. X.; Yan, X. Y.; Dai, D.; Zhang, Y. Y.; Yao, C. Photocatalytic nitrogen fixation over fluoride/attapulgite nanocomposite: Effect of upconversion and fluorine vacancy. Sol. Energy 2019, 191, 251–262.

172

Xue, X. L.; Chen, R. P.; Chen, H. W.; Hu, Y.; Ding, Q. Q.; Liu, Z. T.; Ma, L. B.; Zhu, G. Y.; Zhang, W. J.; Yu, Q. et al. Oxygen vacancy engineering promoted photocatalytic ammonia synthesis on ultrathin two-dimensional bismuth oxybromide nanosheets. Nano Lett. 2018, 18, 7372–7377.

173

Di, J.; Xia, J. X.; Chisholm, M. F.; Zhong, J.; Chen, C.; Cao, X. Z.; Dong, F.; Chi, Z.; Chen, H. L.; Weng, Y. X. et al. Defect-tailoring mediated electron–hole separation in single-unit-cell Bi3O4Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Adv. Mater. 2019, 31, 1807576.

174

Luo, J. Y.; Bai, X. X.; Li, Q.; Yu, X.; Li, C. Y.; Wang, Z. N.; Wu, W. W.; Liang, Y. P.; Zhao, Z. H.; Liu, H. Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance. Nano Energy 2019, 66, 104187.

175

Du, X. C.; Huang, J. W.; Zhang, J. J.; Yan, Y. C.; Wu, C. Y.; Hu, Y.; Yan, C. Y.; Lei, T. Y.; Chen, W.; Fan, C. et al. Modulating electronic structures of inorganic nanomaterials for efficient electrocatalytic water splitting. Angew. Chem. , Int. Ed. 2019, 58, 4484–4502.

176

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

177

Zhang, S.; Zhao, Y. X.; Shi, R.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Efficient photocatalytic nitrogen fixation over Cuδ+-modified defective ZnAl-layered double hydroxide nanosheets. Adv. Energy Mater. 2020, 10, 1901973.

178

Zhao, K.; Zhang, L. Z.; Wang, J. J.; Li, Q. X.; He, W. W.; Yin, J. J. Surface structure-dependent molecular oxygen activation of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2013, 135, 15750–15753.

179

Hou, T. T.; Xiao, Y.; Cui, P. X.; Huang, Y. N.; Tan, X. P.; Zheng, X. S.; Zou, Y.; Liu, C. X.; Zhu, W. K.; Liang, S. Q. et al. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Adv. Energy Mater. 2019, 9, 1902319.

180

Wang, S. Y.; Hai, X.; Ding, X.; Chang, K.; Xiang, Y. G.; Meng, X. G.; Yang, Z. X.; Chen, H.; Ye, J. H. Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 2017, 29, 1701774.

181

Li, P. S.; Zhou, Z. A.; Wang, Q.; Guo, M.; Chen, S. W.; Low, J.; Long, R.; Liu, W.; Ding, P. R.; Wu, Y. Y. et al. Visible-light-driven nitrogen fixation catalyzed by Bi5O7Br nanostructures: Enhanced performance by oxygen vacancies. J. Am. Chem. Soc. 2020, 142, 12430–12439.

182

Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem. , Int. Ed. 2014, 53, 10804–10808.

183

Zhao, Z. L.; Wang, Q.; Huang, X.; Feng, Q.; Gu, S.; Zhang, Z.; Xu, H.; Zeng, L.; Gu, M.; Li, H. Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 2020, 13, 5143–5151.

184

Zhang, H.; Dasbiswas, K.; Ludwig, N. B.; Han, G.; Lee, B.; Vaikuntanathan, S.; Talapin, D. V. Stable colloids in molten inorganic salts. Nature 2017, 542, 328–331.

185

Wang, H. T.; Lee, H. W.; Deng, Y.; Lu, Z. Y.; Hsu, P. C.; Liu, Y. Y.; Lin, D. C.; Cui, Y. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 2015, 6, 7261.

186

Li, Z.; Gao, Z. Y.; Li, B. W.; Zhang, L. L.; Fu, R.; Li, Y.; Mu, X. Y.; Li, L. Fe-Pt nanoclusters modified mott-schottky photocatalysts for enhanced ammonia synthesis at ambient conditions. Appl. Catal. B: Environ. 2020, 262, 118276.

187

Liu, Y. Y.; Wang, H. T.; Lin, D. C.; Liu, C.; Hsu, P. C.; Liu, W.; Chen, W.; Cui, Y. Electrochemical tuning of olivine-type lithium transition-metal phosphates as efficient water oxidation catalysts. Energy Environ. Sci. 2015, 8, 1719–1724.

188

Qi, R. J.; Yu, P. F.; Zhang, J. C.; Guo, W. Q.; He, Y. Y.; Hojo, H.; Einaga, H.; Zhang, Q.; Liu, X. S.; Jiang, Z. et al. Efficient visible light photocatalysis enabled by the interaction between dual cooperative defect sites. Appl. Catal. B: Environ. 2020, 274, 119099.

189

Yu, Z. L.; Gao, L. Z.; Yuan, S. Y.; Wu, Y. Solid defect structure and catalytic activity of perovskite-type catalysts La1–xSrxNiO3–λ and La1–1.333xThxNiO3–λ. J. Chem. Soc., Faraday Trans. 1992, 88, 3245–3249.

190

Ulvestad, A.; Singer, A.; Clark, J. N.; Cho, H. M.; Kim, J. W.; Harder, R.; Maser, J.; Meng, Y. S.; Shpyrko, O. G. Topological defect dynamics in operando battery nanoparticles. Science 2015, 348, 1344–1347.

191

Zhang, G. Q.; Yang, X.; He, C. X.; Zhang, P. X.; Mi, H. W. Constructing a tunable defect structure in TiO2 for photocatalytic nitrogen fixation. J. Mater. Chem. A 2020, 8, 334–341.

192

Xie, C.; Yan, D. F.; Li, H.; Du, S. Q.; Chen, W.; Wang, Y. Y.; Zou, Y. Q.; Chen, R.; Wang, S. Y. Defect chemistry in heterogeneous catalysis: Recognition, understanding, and utilization. ACS Catal. 2020, 10, 11082–11098.

193

Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C. L.; Psaro, R.; Dal Santo, V. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603.

194

Pan, X. Y.; Yang, M. Q.; Fu, X. Z.; Zhang, N.; Xu, Y. J. Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601–3614.

195

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

196

Samadi, M.; Shivaee, H. A.; Pourjavadi, A.; Moshfegh, A. Z. Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: Charge carrier scavengers mechanism. Appl. Catal. A: Gen. 2013, 466, 153–160.

197

Jing, K. Q.; Ma, W.; Ren, Y. H.; Xiong, J. H.; Guo, B. B.; Song, Y. J.; Liang, S. J.; Wu, L. Hierarchical Bi2MoO6 spheres in situ assembled by monolayer nanosheets toward photocatalytic selective oxidation of benzyl alcohol. Appl. Catal. B: Environ. 2019, 243, 10–18.

198

Zhang, X. H.; Pei, C. L.; Chang, X.; Chen, S.; Liu, R.; Zhao, Z. J.; Mu, R. T.; Gong, J. L. FeO6 octahedral distortion activates lattice oxygen in perovskite ferrite for methane partial oxidation coupled with CO2 splitting. J. Am. Chem. Soc. 2020, 142, 11540–11549.

199

Chen, X. Q.; Liu, H. B.; Gu, G. B. Preparation of nanometer crystalline TiO2 with high photo-catalytic activity by pyrolysis of titanyl organic compounds and photo-catalytic mechanism. Mater. Chem. Phys. 2005, 91, 317–324.

200

Sun, Y. F.; Gao, S.; Lei, F. C.; Xie, Y. Atomically-thin two-dimensional sheets for understanding active sites in catalysis. Chem. Soc. Rev. 2015, 44, 623–636.

201

Mao, C. L.; Cheng, H. G.; Tian, H.; Li, H.; Xiao, W. J.; Xu, H.; Zhao, J. C.; Zhang, L. Z. Visible light driven selective oxidation of amines to imines with BiOCl: Does oxygen vacancy concentration matter? Appl. Catal. B: Environ. 2018, 228, 87–96.

202

Yan, C. S.; Fang, Z. W.; Lv, C. D.; Zhou, X.; Chen, G.; Yu, G. H. Significantly improving lithium-ion transport via conjugated anion intercalation in inorganic layered hosts. ACS Nano 2018, 12, 8670–8677.

203

Ischenko, V.; Polarz, S.; Grote, D.; Stavarache, V.; Fink, K.; Driess, M. Zinc oxide nanoparticles with defects. Adv. Funct. Mater. 2005, 15, 1945–1954.

204
Rajh, T.; Poluektov, O. G.; Thurnauer, M. C. Charge separation in titanium oxide nanocrystalline semiconductors revealed by magnetic resonance. In Chemical Physics of Nanostructured Semiconductors. Kokorin, A. I.; Bahnemann, D. W., Eds.; VSP-Brill Academic Publishers: Utrecht, Boston, 2003; pp 1–34.
205

Yu, B. L.; Zhu, C. S.; Gan, F. X.; Huang, Y. B. Electron spin resonance properties of zno microcrystallites. Mater. Lett. 1998, 33, 247–250.

206

Howe, R. F.; Gratzel, M. EPR observation of trapped electrons in colloidal titanium dioxide. J. Phys. Chem. 1985, 89, 4495–4499.

207

Howe, R. F.; Gratzel, M. EPR study of hydrated anatase under UV irradiation. J. Phys. Chem. 1987, 91, 3906–3909.

208

Carter, E.; Carley, A. F.; Murphy, D. M. Evidence for O2 radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J. Phys. Chem. C 2007, 111, 10630–10638.

209

Liu, Y.; Hu, Z. F.; Yu, J. C. Fe enhanced visible-light-driven nitrogen fixation on BiOBr nanosheets. Chem. Mater. 2020, 32, 1488–1494.

210

Huang, H.; Wang, X. S.; Philo, D.; Ichihara, F.; Song, H.; Li, Y. X.; Li, D.; Qiu, T.; Wang, S. Y.; Ye, J. H. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Appl. Catal. B: Environ. 2020, 267, 118686.

211

Jiang, J.; Pachter, R.; Mehmood, F.; Islam, A. E.; Maruyama, B.; Boeckl, J. J. A Raman spectroscopy signature for characterizing defective single-layer graphene: Defect-induced I(D)/I(D') intensity ratio by theoretical analysis. Carbon 2015, 90, 53–62.

212

Cançado, L. G.; Jorio, A.; Ferreira, E. H. M.; Stavale, F.; Achete, C. A.; Capaz, R. B.; Moutinho, M. V. O.; Lombardo, A.; Kulmala, T. S.; Ferrari, A. C. Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett. 2011, 11, 3190–3196.

213

Fang, Y.; Xue, Y. R.; Hui, L.; Yu, H. D.; Li, Y. L. Graphdiyne@ janus magnetite for photocatalytic nitrogen fixation. Angew. Chem. , Int. Ed. 2021, 60, 3170–3174.

214

Wu, Q. P.; van de Krol, R. Selective photoreduction of nitric oxide to nitrogen by nanostructured TiO2 photocatalysts: Role of oxygen vacancies and iron dopant. J. Am. Chem. Soc. 2012, 134, 9369–9375.

215

Aspnes, D. E. Spectroscopic ellipsometry-past, present, and future. Thin Solid Films 2014, 571, 334–344.

216

Egbo, K. O.; Liu, C. P.; Ekuma, C. E.; Yu, K. M. Vacancy defects induced changes in the electronic and optical properties of NiO studied by spectroscopic ellipsometry and first-principles calculations. J. Appl. Phys. 2020, 128, 135705.

217

Li, C. C.; Wang, T.; Zhao, Z. J.; Yang, W. M.; Li, J. F.; Li, A.; Yang, Z. L.; Ozin, G. A.; Gong, J. L. Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. , Int. Ed. 2018, 57, 5278–5282.

218

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

219

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

220

Jiao, S. L.; Fu, X. W.; Zhang, L.; Zeng, Y. J.; Huang, H. W. Point- defect-optimized electron distribution for enhanced electrocatalysis: Towards the perfection of the imperfections. Nano Today 2020, 31, 100833.

221

Guan, R. Q.; Wang, D. D.; Zhang, Y. J.; Liu, C.; Xu, W.; Wang, J. O.; Zhao, Z.; Feng, M.; Shang, Q. K.; Sun, Z. C. Enhanced photocatalytic N2 fixation via defective and fluoride modified TiO2 surface. Appl. Catal. B: Environ. 2021, 282, 119580.

222

Wang, W. K.; Zhang, H. M.; Zhang, S. B.; Liu, Y. Y.; Wang, G. Z.; Sun, C. H.; Zhao, H. J. Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: Visible-light-driven photocatalytic nitrogen reduction. Angew. Chem. , Int. Ed. 2019, 58, 16644–16650.

223

Wang, H.; Yong, D. Y.; Chen, S. C.; Jiang, S. L.; Zhang, X. D.; Shao, W.; Zhang, Q.; Yan, W. S.; Pan, B. C.; Xie, Y. Oxygen- vacancy-mediated exciton dissociation in BiOBr for boosting charge-carrier-involved molecular oxygen activation. J. Am. Chem. Soc. 2018, 140, 1760–1766.

224

Lyu, M.; Liu, Y. W.; Zhi, Y. D.; Xiao, C.; Gu, B. C.; Hua, X. M.; Fan, S. J.; Lin, Y.; Bai, W.; Tong, W. et al. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition. J. Am. Chem. Soc. 2015, 137, 15043–15048.

225

Jiang, X. D.; Zhang, Y. P.; Jiang, J.; Rong, Y. S.; Wang, Y. C.; Wu, Y. C.; Pan, C. X. Characterization of oxygen vacancy associates within hydrogenated TiO2: A positron annihilation study. J. Phys. Chem. C 2012, 116, 22619–22624.

226

Siegel, R. W. Positron annihilation spectroscopy. Annu. Rev. Mater. Sci. 1980, 10, 393–425.

227

Zou, Y. Q.; Wang, S. Y. An investigation of active sites for electro­chemical CO2 reduction reactions: From in situ characterization to rational design. Adv. Sci. 2021, 8, 2003579.

228

Huang, T. X.; Cong, X.; Wu, S. S.; Lin, K. Q.; Yao, X.; He, Y. H.; Wu, J. B.; Bao, Y. F.; Huang, S. C.; Wang, X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 2019, 10, 5544.

229

Pfisterer, J. H. K.; Baghernejad, M.; Giuzio, G.; Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electro­chemical reaction conditions. Nat. Commun. 2019, 10, 5702.

230

Li, S.; Yao, Z. P.; Zheng, J. M.; Fu, M. S.; Cen, J. J.; Hwang, S.; Jin, H. L.; Orlov, A.; Gu, L.; Wang, S. et al. Direct observation of defect-aided structural evolution in a nickel-rich layered cathode. Angew. Chem. , Int. Ed. 2020, 59, 22092–22099.

231

Kondo, S.; Mitsuma, T.; Shibata, N.; Ikuhara, Y. Direct observation of individual dislocation interaction processes with grain boundaries. Sci. Adv. 2016, 2, e1501926.

232

Ding, Y.; Choi, Y.; Chen, Y.; Pradel, K. C.; Liu, M. L.; Wang, Z. L. Quantitative nanoscale tracking of oxygen vacancy diffusion inside single ceria grains by in situ transmission electron microscopy. Mater. Today 2020, 38, 24–34.

233

Kwon, O.; Kim, Y. I.; Kim, K.; Kim, J. C.; Lee, J. H.; Park, S. S.; Han, J. W.; Kim, Y. M.; Kim, G.; Jeong, H. Y. Probing one- dimensional oxygen vacancy channels driven by cation–anion double ordering in perovskites. Nano Lett. 2020, 20, 8353–8359.

234

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem. , Int. Ed. 2019, 58, 1252–1265.

235

Sartoretti, E.; Novara, C.; Fontana, M.; Giorgis, F.; Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. New insights on the defect sites evolution during Co oxidation over doped ceria nanocatalysts probed by in situ Raman spectroscopy. Appl. Catal. A: Gen. 2020, 596, 117517.

236

Liu, X.; Meng, J. S.; Zhu, J. X.; Huang, M.; Wen, B.; Guo, R. T.; Mai, L. Comprehensive understandings into complete reconstruction of precatalysts: Synthesis, applications, and characterizations. Adv. Mater. 2021, 33, 2007344.

237

Xiao, Z. H.; Huang, Y. C.; Dong, C. L.; Xie, C.; Liu, Z. J.; Du, S. Q.; Chen, W.; Yan, D. F.; Tao, L.; Shu, Z. W. et al. Operando identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 12087–12095.

238

Yang, Y. Q.; Yin, L. C.; Gong, Y.; Niu, P.; Wang, J. Q.; Gu, L.; Chen, X. Q.; Liu, G.; Wang, L. Z.; Cheng, H. M. An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv. Mater. 2018, 30, 1704479.

239

Zhao, D. M.; Dong, C. L.; Wang, B.; Chen, C.; Huang, Y. C.; Diao, Z. D.; Li, S. Z.; Guo, L. J.; Shen, S. H. Synergy of dopants and defects in graphitic carbon nitride with exceptionally modulated band structures for efficient photocatalytic oxygen evolution. Adv. Mater. 2019, 31, 1903545.

240

Mohebinia, M.; Wu, C.; Yang, G.; Dai, S.; Hakimian, A.; Tong, T.; Ghasemi, H.; Wang, Z.; Wang, D.; Ren, Z. et al. Ultrathin bismuth oxyiodide nanosheets for photocatalytic ammonia generation from nitrogen and water under visible to near-infrared light. Mater. Today Phys. 2021, 16, 100293.

241

Liang, C.; Niu, H. Y.; Guo, H.; Niu, C. G.; Yang, Y. Y.; Liu, H. Y.; Tang, W. W.; Feng, H. P. Efficient photocatalytic nitrogen fixation to ammonia over bismuth monoxide quantum dots-modified defective ultrathin graphitic carbon nitride. Chem. Eng. J. 2021, 406, 126868.

242

Fu, F.; Shen, H. D.; Sun, X.; Xue, W. W.; Shoneye, A.; Ma, J. N.; Luo, L.; Wang, D. J.; Wang, J. G.; Tang, J. W. Synergistic effect of surface oxygen vacancies and interfacial charge transfer on Fe(Ⅲ)/ Bi2MoO6 for efficient photocatalysis. Appl. Catal. B: Environ. 2019, 247, 150–162.

243

Li, Y. S.; Tang, Z. L.; Zhang, J. Y.; Zhang, Z. T. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance. J. Phys. Chem. C 2016, 120, 9750–9763.

244

Xu, C. M.; Qiu, P. X.; Li, L. Y.; Chen, H.; Jiang, F.; Wang, X. Bismuth subcarbonate with designer defects for broad-spectrum photocatalytic nitrogen fixation. ACS Appl. Mater. Interfaces 2018, 10, 25321–25328.

245

Li, Q.; Bai, X. X.; Luo, J. Y.; Li, C. Y.; Wang, Z. N.; Wu, W. W.; Liang, Y. P.; Zhao, Z. H. Fe doped SrWO4 with tunable band structure for photocatalytic nitrogen fixation. Nanotechnology 2020, 31, 375402.

246

Xue, Y. J.; Guo, Y. C.; Liang, Z. Q.; Cui, H. Z.; Tian, J. Porous g-C3N4 with nitrogen defects and cyano groups for excellent photocatalytic nitrogen fixation without co-catalysts. J. Colloid Interface Sci. 2019, 556, 206–213.

247

Wu, D. P.; Wang, R.; Yang, C.; An, Y. P.; Lu, H.; Wang, H. J.; Cao, K.; Gao, Z. Y.; Zhang, W. C.; Xu, F. et al. Br doped porous bismuth oxychloride micro-sheets with rich oxygen vacancies and dominating {001} facets for enhanced nitrogen photo-fixation performances. J. Colloid Interface Sci. 2019, 556, 111–119.

248

Shi, L.; Li, Z.; Ju, L. C.; Carrasco-Pena, A.; Orlovskaya, N.; Zhou, H. Q.; Yang, Y. Promoting nitrogen photofixation over a periodic WS2@TiO2 nanoporous film. J. Mater. Chem. A 2020, 8, 1059–1065.

249

Bu, T. A.; Hao, Y. C.; Gao, W. Y.; Su, X.; Chen, L. W.; Zhang, N.; Yin, A. X. Promoting photocatalytic nitrogen fixation with alkali metal cations and plasmonic nanocrystals. Nanoscale 2019, 11, 10072–10079.

250

Zhao, Y. Y.; Zhou, S.; Zhao, J. J.; Du, Y.; Dou, S. X. Control of photocarrier separation and recombination at bismuth oxyhalide interface for nitrogen fixation. J. Phys. Chem. Lett. 2020, 11, 9304–9312.

251

Xue, J. W.; Fujitsuka, M.; Majima, T. Defect-mediated electron transfer in photocatalysts. Chem. Commun. 2021, 57, 3532–3542.

252

Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

253

Li, H.; Shang, J.; Ai, Z. H.; Zhang, L. Z. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} facets. J. Am. Chem. Soc. 2015, 137, 6393–6399.

254

Niu, X. Y.; Zhu, Q.; Jiang, S. L.; Zhang, Q. Photoexcited electron dynamics of nitrogen fixation catalyzed by ruthenium single-atom catalysts. J. Phys. Chem. Lett. 2020, 11, 9579–9586.

255

Brunauer, S.; Emmett, P. H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319.

256

Dong, G. H.; Ho, W.; Wang, C. Y. Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 2015, 3, 23435–23441.

257

Li, H.; Shang, J.; Shi, J. G.; Zhao, K.; Zhang, L. Z. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986–1993.

258

Mao, C. L.; Li, H.; Gu, H. G.; Wang, J. X.; Zou, Y. J.; Qi, G. D.; Xu, J.; Deng, F.; Shen, W. J.; Li, J. et al. Beyond the thermal equilibrium limit of ammonia synthesis with dual temperature zone catalyst powered by solar light. Chem 2019, 5, 2702–2717.

259

Xue, X. L.; Chen, R. P.; Yan, C. Z.; Hu, Y.; Zhang, W. J.; Yang, S. Y.; Ma, L. B.; Zhu, G. Y.; Jin, Z. Efficient photocatalytic nitrogen fixation under ambient conditions enabled by the heterojunctions of n-type Bi2MoO6 and oxygen-vacancy-rich p-type BiOBr. Nanoscale 2019, 11, 10439–10445.

260

Wang, T. Y.; Feng, C. T.; Liu, J. Q.; Wang, D. J.; Hu, H. M.; Hu, J.; Chen, Z.; Xue, G. L. Bi2WO6 hollow microspheres with high specific surface area and oxygen vacancies for efficient photocatalysis N2 fixation. Chem. Eng. J. 2021, 414, 128827.

261

Wu, H. Y.; Li, X.; Cheng, Y.; Xiao, Y. H.; Li, R. F.; Wu, Q. P.; Lin, H.; Xu, J.; Wang, G. Q.; Lin, C. et al. Plasmon-driven N2 photofixation in pure water over MoO3−x nanosheets under visible to NIR excitation. J. Mater. Chem. A 2020, 8, 2827–2835.

262

Li, Y. H.; Chen, X.; Zhang, M. J.; Zhu, Y. M.; Ren, W. J.; Mei, Z. W.; Gu, M.; Pan, F. Oxygen vacancy-rich MoO3−x nanobelts for photocatalytic N2 reduction to NH3 in pure water. Catal. Sci. Technol. 2019, 9, 803–810.

263

Fan, J. Y.; Zuo, M. M.; Ding, Z. X.; Zhao, Z. W.; Liu, J.; Sun, B. A readily synthesis of oxygen vacancy-induced In(OH)3/carbon nitride 0D/2D heterojunction for enhanced visible-light-driven nitrogen fixation. Chem. Eng. J. 2020, 396, 125263.

264

Liu, Q.; Yuan, J. L.; Gan, Z. W.; Liu, C.; Li, J.; Liang, Y.; Chen, R. Photocatalytic N2 reduction: Uncertainties in the determination of ammonia production. ACS Sustain. Chem. Eng. 2021, 9, 560–568.

265

Ran, Y.; Yu, X. L.; Liu, J. Q.; Cui, J. Y.; Wang, J. P.; Wang, L.; Zhang, Y. H.; Xiang, X.; Ye, J. Polymeric carbon nitride with frustrated lewis pair sites for enhanced photofixation of nitrogen. J. Mater. Chem. A 2020, 8, 13292–13298.

266

Liu, S. Z.; Wang, Y. J.; Wang, S. B.; You, M. M.; Hong, S.; Wu, T. S.; Soo, Y. L.; Zhao, Z. Q.; Jiang, G. Y.; Qiu, J. S. et al. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustain. Chem. Eng. 2019, 7, 6813–6820.

267

Hou, T. T.; Li, Q.; Zhang, Y. D.; Zhu, W. K.; Yu, K. F.; Wang, S. M.; Xu, Q.; Liang, S. Q.; Wang, L. B. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Appl. Catal. B: Environ. 2020, 273, 119072.

268

Xue, Y. J.; Kong, X. K.; Guo, Y. C.; Liang, Z. Q.; Cui, H. Z.; Tian, J. Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation. J. Materiomics 2020, 6, 128–137.

269

Wu, G.; Yu, L. H.; Liu, Y. F.; Zhao, J. M.; Han, Z.; Geng, G. One step synthesis of N vacancy-doped g-C3N4/Ag2CO3 heterojunction catalyst with outstanding "two-path" photocatalytic N2 fixation ability via in-situ self-sacrificial method. Appl. Surf. Sci. 2019, 481, 649–660.

270

Ding, Z.; Wang, S.; Chang, X.; Wang, D. H.; Zhang, T. H. Nano- MOF@defected film C3N4 Z-scheme composite for visible-light photocatalytic nitrogen fixation. RSC Adv. 2020, 10, 26246–26255.

271

Zhou, N.; Qiu, P. X.; Chen, H.; Jiang, F. KOH etching graphitic carbon nitride for simulated sunlight photocatalytic nitrogen fixation with cyano groups as defects. J. Taiwan Inst. Chem. Eng. 2018, 83, 99–106.

272

Hu, X. L.; Zhang, W. J.; Yong, Y. W.; Xu, Y.; Wang, X. H.; Yao, X. X. One-step synthesis of iodine-doped g-C3N4 with enhanced photocatalytic nitrogen fixation performance. Appl. Surf. Sci. 2020, 510, 145413.

273

Cao, S. H.; Fan, B.; Feng, Y. C.; Chen, H.; Jiang, F.; Wang, X. Sulfur-doped g-C3N4 nanosheets with carbon vacancies: General synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem. Eng. J. 2018, 353, 147–156.

274

He, Z. Y.; Wang, Y.; Dong, X. L.; Zheng, N.; Ma, H. C.; Zhang, X. F. Indium sulfide nanotubes with sulfur vacancies as an efficient photocatalyst for nitrogen fixation. RSC Adv. 2019, 9, 21646–21652.

275

Cao, Y. H.; Hu, S. Z.; Li, F. Y.; Fan, Z. P.; Bai, J.; Lu, G.; Wang, Q. Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Adv. 2016, 6, 49862–49867.

276

Hu, S. Z.; Chen, X.; Li, Q.; Zhao, Y. F.; Mao, W. Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 2016, 6, 5884–5890.

277

Zhang, Q.; Hu, S. Z.; Fan, Z. P.; Liu, D. S.; Zhao, Y. F.; Ma, H. F.; Li, F. Y. Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans. 2016, 45, 3497–3505.

278

Li, H. T.; Liu, Y. D.; Liu, Y. L.; Wang, L. Z.; Tang, R.; Deng, P. J.; Xu, Z. Q.; Haynes, B.; Sun, C. H.; Huang, J. Efficient visible light driven ammonia synthesis on sandwich structured C3N4/MoS2/Mn3O4 catalyst. Appl. Catal. B: Environ. 2021, 281, 119476.

279

Ye, X. H.; Yan, X. Y.; Chu, X. N.; Zuo, S. X.; Liu, W. J.; Li, X. Z.; Yao, C. Construction of upconversion fluoride/attapulgite nano­composite for visible-light-driven photocatalytic nitrogen fixation. Front. Mater. Sci. 2020, 14, 469–480.

280

Jia, H. L.; Du, A. X.; Zhang, H.; Yang, J. H.; Jiang, R. B.; Wang, J. F.; Zhang, C. Y. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. J. Am. Chem. Soc. 2019, 141, 5083–5086.

281

Sun, C.; Chen, Z. Q.; Cui, J.; Li, K.; Qu, H. X.; Xie, H. F.; Zhong, Q. Site-exposed Ti3C2 mxene anchored in N-defect g-C3N4 heterostructure nanosheets for efficient photocatalytic N2 fixation. Catal. Sci. Technol. 2021, 11, 1027–1038.

282

Kong, Y.; Lv, C. D.; Zhang, C. M.; Chen, G. Cyano group modified g-C3N4: Molten salt method achievement and promoted photocatalytic nitrogen fixation activity. Appl. Surf. Sci. 2020, 515, 146009.

283

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Tada, T.; Hosono, H. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 2020, 583, 391–395.

284

Ye, T. N.; Park, S. W.; Lu, Y. F.; Li, J.; Sasase, M.; Kitano, M.; Hosono, H. Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts. J. Am. Chem. Soc. 2020, 142, 14374–14383.

285

Hu, S. Z.; Li, Y. M.; Li, F. Y.; Fan, Z. P.; Ma, H. F.; Li, W.; Kang, X. X. Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies. ACS Sustain. Chem. Eng. 2016, 4, 2269–2278.

286

Wang, W.; Huang, Y.; Wang, Z. Y. Defect engineering in two- dimensional graphitic carbon nitride and application to photocatalytic air purification. Acta Phys. -Chim. Sin. 2021, 37, 2011073.

287

Zhang, Y.; Di, J.; Ding, P. H.; Zhao, J. Z.; Gu, K. Z.; Chen, X. L.; Yan, C.; Yin, S.; Xia, J. X.; Li, H. M. Ultrathin g-C3N4 with enriched surface carbon vacancies enables highly efficient photocatalytic nitrogen fixation. J. Colloid Interface Sci. 2019, 553, 530–539.

288

He, C. L.; Li, X. Z.; Chen, X. F.; Ma, S. J.; Yan, X. Y.; Zhang, Y. Y.; Zuo, S. X.; Yao, C. Palygorskite supported rare earth fluoride for photocatalytic nitrogen fixation under full spectrum. Appl. Clay Sci. 2020, 184, 105398.

289

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

290

Meng, S. G.; Chen, C.; Gu, X. M.; Wu, H. H.; Meng, Q. Q.; Zhang, J. F.; Chen, S. F.; Fu, X. L.; Liu, D.; Lei, W. W. Efficient photocatalytic H2 evolution, CO2 reduction and N2 fixation coupled with organic synthesis by cocatalyst and vacancies engineering. Appl. Catal. B: Environ. 2021, 285, 119789.

291

Sun, S.; An, Q.; Wang, W. Z.; Zhang, L.; Liu, J. J.; Goddard Ⅲ, W. A. Efficient photocatalytic reduction of dinitrogen to ammonia on bismuth monoxide quantum dots. J. Mater. Chem. A 2017, 5, 201–209.

292

Huang, B. M.; Liu, Y.; Pang, Q.; Zhang, X. Y.; Wang, H. T.; Shen, P. K. Boosting the photocatalytic activity of mesoporous SrTiO3 for nitrogen fixation through multiple defects and strain engineering. J. Mater. Chem. A 2020, 8, 22251–22256.

293

Cheng, Y. W.; Song, Y.; Zhang, Y. M. The doping and oxidation of 2D black and blue phosphorene: A new photocatalyst for nitrogen reduction driven by visible light. Phys. Chem. Chem. Phys. 2019, 21, 24449–24457.

294

Wang, K. Y.; Gu, G. Z.; Hu, S. Z.; Zhang, J.; Sun, X. L.; Wang, F.; Li, P.; Zhao, Y. F.; Fan, Z. P.; Zou, X. Molten salt assistant synthesis of three-dimensional cobalt doped graphitic carbon nitride for photocatalytic N2 fixation: Experiment and DFT simulation analysis. Chem. Eng. J. 2019, 368, 896–904.

295

Hu, Y. Z.; Zhao, G. X.; Pan, Q. S.; Wang, H. H.; Shen, Z. W.; Peng, B. X.; Busser, G. W.; Wang, X. K.; Muhler, M. Highly selective anaerobic oxidation of alcohols over Fe-doped SrTiO3 under visible light. ChemCatChem 2019, 11, 5139–5144.

296

Li, B. F.; Hong, J. H.; Ai, Y. J.; Hu, Y. Z.; Shen, Z. W.; Li, S. J.; Zou, Y. T.; Zhang, S.; Wang, X. K.; Zhao, G. X. et al. Visible-near- infrared-light-driven selective oxidation of alcohols over nanostructured Cu doped SrTiO3 in water under mild condition. J. Catal. 2021, 399, 142–149.

297

MacKay, B. A.; Fryzuk, M. D. Dinitrogen coordination chemistry:  On the biomimetic borderlands. Chem. Rev. 2004, 104, 385–402.

298

Légaré, M. A.; Bélanger-Chabot, G.; Dewhurst, R. D.; Welz, E.; Krummenacher, I.; Engels, B.; Braunschweig, H. Nitrogen fixation and reduction at boron. Science 2018, 359, 896–900.

299

Li, J. X.; Wang, D. D.; Guan, R. Q.; Zhang, Y. J.; Zhao, Z.; Zhai, H. J.; Sun, Z. C. Vacancy-enabled mesoporous TiO2 modulated by nickel doping with enhanced photocatalytic nitrogen fixation performance. ACS Sustain. Chem. Eng. 2020, 8, 18258–18265.

300

Shen, Z. F.; Li, F. F.; Lu, J. R.; Wang, Z. D.; Li, R.; Zhang, X. C.; Zhang, C. M.; Wang, Y. W.; Wang, Y. F.; Lv, Z. P. et al. Enhanced N2 photofixation activity of flower-like BiOCl by in situ Fe(Ⅲ) doped as an activation center. J. Colloid Interface Sci. 2021, 584, 174–181.

301

Mao, Y. H.; Yang, X. W.; Gong, W. B.; Zhang, J.; Pan, T.; Sun, H. Z.; Chen, Z. G.; Wang, Z.; Zhu, J. F.; Hu, J. et al. A dopant replacement- driven molten salt method toward the synthesis of sub-5-nm-sized ultrathin nanowires. Small 2020, 16, 2001098.

302

Li, H. D.; Gu, S. N.; Sun, Z. J.; Guo, F.; Xie, Y. M.; Tao, B. R.; He, X.; Zhang, W. F.; Chang, H. X. The in-built bionic "MoFe cofactor" in Fe-doped two-dimensional MoTe2 nanosheets for boosting the photocatalytic nitrogen reduction performance. J. Mater. Chem. A 2020, 8, 13038–13048.

303

Tian, C. S.; Sheng, W. L.; Tan, H.; Jiang, H.; Xiong, C. R. Fabrication of lattice-doped TiO2 nanofibers by vapor-phase growth for visible light-driven N2 conversion to ammonia. ACS Appl. Mater. Interfaces 2018, 10, 37453–37460.

304

Ying, Z. H.; Chen, S. T.; Zhang, S.; Peng, T. Y.; Li, R. J. Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Appl. Catal. B: Environ. 2019, 254, 351–359.

305

Meng, Q. Q.; Lv, C. D.; Sun, J. X.; Hong, W. Z.; Xing, W. N.; Qiang, L. S.; Chen, G.; Jin, X. L. High-efficiency Fe-mediated Bi2MoO6 nitrogen-fixing photocatalyst: Reduced surface work function and ameliorated surface reaction. Appl. Catal. B: Environ. 2019, 256, 117781.

306

Zeng, L.; Zhe, F.; Wang, Y.; Zhang, Q. L.; Zhao, X. Y.; Hu, X.; Wu, Y.; He, Y. M. Preparation of interstitial carbon doped BiOI for enhanced performance in photocatalytic nitrogen fixation and methyl orange degradation. J. Colloid Interface Sci. 2019, 539, 563–574.

307

Feng, X. W.; Chen, H.; Jiang, F.; Wang, X. Enhanced visible-light photocatalytic nitrogen fixation over semicrystalline graphitic carbon nitride: Oxygen and sulfur co-doping for crystal and electronic structure modulation. J. Colloid Interface Sci. 2018, 509, 298–306.

308

Han, Q.; Wu, C. B.; Jiao, H. M.; Xu, R. Y.; Wang, Y. Z.; Xie, J. J.; Guo, Q.; Tang, J. W. Rational design of high-concentration Ti3+ in porous carbon-doped TiO2 nanosheets for efficient photocatalytic ammonia synthesis. Adv. Mater. 2021, 33, 2008180.

309

Xue, X. L.; Chen, H. W.; Xiong, Y.; Chen, R. P.; Jiang, M. H.; Fu, G.; Xi, Z. H.; Zhang, X. L.; Ma, J.; Fang, W. H. et al. Near-infrared- responsive photo-driven nitrogen fixation enabled by oxygen vacancies and sulfur doping in black TiO2–xSy nanoplatelets. ACS Appl. Mater. Interfaces 2021, 13, 4975–4983.

310

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

311

Tao, H. C.; Choi, C.; Ding, L. X.; Jiang, Z.; Han, Z. S.; Jia, M. W.; Fan, Q.; Gao, Y. N.; Wang, H. H.; Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem 2019, 5, 204–214.

312

Li, J.; Liu, P.; Tang, Y. Z.; Huang, H. L.; Cui, H. Z.; Mei, D. H.; Zhong, C. L. Single-atom Pt–N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020, 10, 2431–2442.

313

Hou, T. T.; Peng, H. L.; Xin, Y.; Wang, S. M.; Zhu, W. K.; Chen, L. L.; Yao, Y.; Zhang, W. H.; Liang, S. Q.; Wang, L. B. Fe single- atom catalyst for visible-light-driven photofixation of nitrogen sensitized by triphenylphosphine and sodium iodide. ACS Catal. 2020, 10, 5502–5510.

314

Lv, X. S.; Wei, W.; Li, F. P.; Huang, B. B.; Dai, Y. Metal-free B@g-CN: Visible/infrared light-driven single atom photocatalyst enables spontaneous dinitrogen reduction to ammonia. Nano Lett. 2019, 19, 6391–6399.

315

Liu, J. D.; Wei, Z. X.; Dou, Y. H.; Feng, Y. Z.; Ma, J. M. Ru-doped phosphorene for electrochemical ammonia synthesis. Rare Met. 2020, 39, 874–880.

316

Huang, P. C.; Liu, W.; He, Z. H.; Xiao, C.; Yao, T.; Zou, Y. M.; Wang, C. M.; Qi, Z. M.; Tong, W.; Pan, B. C. et al. Single atom accelerates ammonia photosynthesis. Sci. China Chem. 2018, 61, 1187–1196.

317

Ling, C. Y.; Niu, X. H.; Li, Q.; Du, A. J.; Wang, J. L. Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 2018, 140, 14161–14168.

318

Zhang, C. M.; Xu, Y. L.; Lv, C. D.; Bai, L. C.; Liao, J.; Zhai, Y. C.; Zhang, H. W.; Chen, G. Amorphous engineered cerium oxides photocatalyst for efficient nitrogen fixation. Appl. Catal. B: Environ. 2020, 264, 118416.

319

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor- based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

320

Marschall, R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Adv. Funct. Mater. 2014, 24, 2421–2440.

321

Wang, T. Y.; Liu, J. Q.; Wu, P. F.; Feng, C. T.; Wang, D. J.; Hu, H. M.; Xue, G. L. Direct utilization of air and water as feedstocks in the photo-driven nitrogen reduction reaction over a ternary Z-scheme SiW9CO3/PDA/BWO hetero-junction. J. Mater. Chem. A 2020, 8, 16590–16598.

322

Li, X. B.; Wang, W. W.; Dong, F.; Zhang, Z. Q.; Han, L.; Luo, X. D.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Jia, G. H. et al. Recent advances in noncontact external-field-assisted photocatalysis: From fundamentals to applications. ACS Catal. 2021, 11, 4739–4769.

323

Zhao, Z.; Wang, D. D.; Gao, R.; Wen, G. B.; Feng, M.; Song, G. X.; Zhu, J. B.; Luo, D.; Tan, H. Q.; Ge, X. et al. Magnetic-field- stimulated efficient photocatalytic N2 fixation over defective BaTiO3 perovskites. Angew. Chem. , Int. Ed. 2021, 60, 11910–11918.

324

Zhang, K.; Guo, L. J. Metal sulphide semiconductors for photocatalytic hydrogen production. Catal. Sci. Technol. 2013, 3, 1672–1690.

325

Zhang, S. Q.; Si, Y. M.; Li, B.; Yang, L. X.; Dai, W. L.; Luo, S. L. Atomic-level and modulated interfaces of photocatalyst heterostructure constructed by external defect-induced strategy: A critical review. Small 2021, 17, 2004980.

326

Nakayama, M.; Martin, M. First-principles study on defect chemistry and migration of oxide ions in ceria doped with rare-earth cations. Phys. Chem. Chem. Phys. 2009, 11, 3241–3249.

327

Yang, X. Y.; Fernández-Carrión, A. J.; Wang, J. H.; Porcher, F.; Fayon, F.; Allix, M.; Kuang, X. J. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion scheelite structure. Nat. Commun. 2018, 9, 4484.

328

Wu, Q. P.; Zheng, Q.; van de Krol, R. Creating oxygen vacancies as a novel strategy to form tetrahedrally coordinated Ti4+ in Fe/TiO2 nanoparticles. J. Phys. Chem. C 2012, 116, 7219–7226.

329

Xiong, X. Y.; Mao, C. L.; Yang, Z. J.; Zhang, Q. H.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. Photocatalytic CO2 reduction to CO over Ni single atoms supported on defect-rich zirconia. Adv. Energy Mater. 2020, 10, 2002928.

330

Zhang, Y. Q.; Guo, L.; Tao, L.; Lu, Y. B.; Wang, S. Y. Defect-based single-atom electrocatalysts. Small Methods 2019, 3, 1800406.

331

Pan, J. B.; Wang, B. H.; Wang, J. B.; Ding, H. Z.; Zhou, W.; Liu, X.; Zhang, J. R.; Shen, S.; Guo, J. K.; Chen, L. et al. Activity and stability boosting of an oxygen-vacancy-rich BiVO4 photoanode by NiFe-MOFs thin layer for water oxidation. Angew. Chem. , Int. Ed. 2021, 60, 1433–1440.

332

Zu, X. L.; Zhao, Y.; Li, X. D.; Chen, R. H.; Shao, W. W.; Wang, Z. Q.; Hu, J.; Zhu, J. F.; Pan, Y.; Sun, Y. F. et al. Ultrastable and efficient visible-light-driven CO2 reduction triggered by regenerative oxygen-vacancies in Bi2O2CO3 nanosheets. Angew. Chem. , Int. Ed. 2021, 60, 13840–13846.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 May 2021
Revised: 24 June 2021
Accepted: 29 June 2021
Published: 04 September 2021
Issue date: April 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21972010); Beijing Natural Science Foundation (No. 2192039); the Foundation of Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, the Chinese Academy of Sciences (No. KLLCCSE-201901, SARI, CAS); Beijing University of Chemical Technology (XK180301, XK1804-2).

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return