Journal Home > Volume 15 , Issue 3

Photocatalytic hydrogen production by overall water solar-splitting is a prospective strategy to solve energy crisis. However, the rapid recombination of photogenerated electron–hole pairs deeply restricts photocatalytic activity of catalysts. Here, the in-situ transient photovoltage (TPV) technique was developed to investigate the interfacial photogenerated carrier extraction, photogenerated carrier recombination and the interfacial electron delivery kinetics of the photocatalyst. The carbon dots/NiCo2O4 (CDs/NiCo2O4) composite shows weakened recombination rate of photogenerated carriers due to charge storage of CDs, which enhances the photocatalytic water decomposition activity without any scavenger. CDs can accelerate the interface electron extraction about 0.09 ms, while the maximum electron storage time by CDs is up to 0.7 ms. The optimal CDs/NiCo2O4 composite (5 wt.% CDs) displays the hydrogen production of 62 µmol·h−1·g−1 and oxygen production of 29 µmol·h−1·g−1 at normal atmosphere, which is about 4 times greater than that of pristine NiCo2O4. This work provides sufficient evidence on the charge storage of CDs and the interfacial charge kinetics of photocatalysts on the basis of in-situ TPV tests.


menu
Abstract
Full text
Outline
About this article

In-situ transient photovoltage study on interface electron transfer regulation of carbon dots/NiCo2O4 photocatalyst for the enhanced overall water splitting activity

Show Author's information Haodong Nie1Yan Liu1Yi Li1Kaiqiang Wei1Zhenyu Wu1Hong Shi1Hui Huang1Yang Liu1( )Mingwang Shao1Zhenhui Kang1,2( )
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China

Abstract

Photocatalytic hydrogen production by overall water solar-splitting is a prospective strategy to solve energy crisis. However, the rapid recombination of photogenerated electron–hole pairs deeply restricts photocatalytic activity of catalysts. Here, the in-situ transient photovoltage (TPV) technique was developed to investigate the interfacial photogenerated carrier extraction, photogenerated carrier recombination and the interfacial electron delivery kinetics of the photocatalyst. The carbon dots/NiCo2O4 (CDs/NiCo2O4) composite shows weakened recombination rate of photogenerated carriers due to charge storage of CDs, which enhances the photocatalytic water decomposition activity without any scavenger. CDs can accelerate the interface electron extraction about 0.09 ms, while the maximum electron storage time by CDs is up to 0.7 ms. The optimal CDs/NiCo2O4 composite (5 wt.% CDs) displays the hydrogen production of 62 µmol·h−1·g−1 and oxygen production of 29 µmol·h−1·g−1 at normal atmosphere, which is about 4 times greater than that of pristine NiCo2O4. This work provides sufficient evidence on the charge storage of CDs and the interfacial charge kinetics of photocatalysts on the basis of in-situ TPV tests.

Keywords: normal pressure, carbon dots, photocatalytic hydrogen evolution, transient photovoltage technique, continuous wavelet analysis

References(39)

1

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

2

Martin, D. J.; Qiu, K. P.; Shevlin, S. A.; Handoko, A. D.; Chen, X. W.; Guo, Z. X.; Tang, J. W. Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem., Int. Ed. 2014, 53, 9240–9245.

3

Zhu, M. S.; Sun, Z. C.; Fujitsuka, M.; Majima, T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem., Int. Ed. 2018, 57, 2160–2164.

4

Shi, W. L.; Guo, F.; Zhu, C.; Wang, H. B.; Li, H.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon dots anchored on octahedral CoO as a stable visible-light-responsive composite photocatalyst for overall water splitting. J. Mater. Chem. A 2017, 5, 19800–19807.

5

Zhu, C.; Zhu, M. M.; Sun, Y.; Zhou, Y. J.; Gao, J.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction. ACS Appl. Energy Mater. 2019, 2, 8737–8746.

6

Zhu, C.; Liu, C. A.; Zhou, Y. J.; Fu, Y. J.; Guo, S. J.; Li, H.; Zhao, S. Q.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon dots enhance the stability of CdS for visible-light-driven overall water splitting. Appl. Catal. B: Environ. 2017, 216, 114–121.

7

Cao, J. J.; Wang, H.; Zhao, Y. J.; Liu, Y.; Wu, Q. Y.; Huang, H.; Shao, M. W; Liu, Y.; Kang, Z. H. Phosphorus-doped porous carbon nitride for efficient sole production of hydrogen peroxide via photocatalytic water splitting with a two-channel pathway. J. Mater. Chem. A 2020, 8, 3701–3707.

8

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene Co-Catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

9

Indra, A.; Acharjya, A.; Menezes, P. W.; Merschjann, C.; Hollmann, D.; Schwarze, M.; Aktas, M.; Friedrich, A.; Lochbrunner, S.; Thomas, A. et al. Boosting visible-light-driven photocatalytic hydrogen evolution with an integrated nickel phosphide–carbon nitride system. Angew. Chem., Int. Ed. 2017, 56, 1653–1657.

10

Jiao, Y. Y.; Huang, Q. Z.; Wang, J. S.; He, Z. H.; Li, Z. J. A Novel MoS2 quantum dots (QDs) decorated z-scheme g-C3N4 nanosheet/N-doped carbon dots heterostructure photocatalyst for photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2019, 247, 124–132.

11

Chen, Y. L.; Liu, X. Q.; Hou, L.; Guo, X. R.; Fu, R. W.; Sun, J. M. Construction of covalent bonding oxygen-doped carbon nitride/graphitic carbon nitride z-scheme heterojunction for enhanced visible-light-driven H2 evolution. Chem. Eng. J. 2020, 383, 123132.

12

Zhang, Z. Y.; Shao, C. L.; Li, X. H.; Wang, C. H.; Zhang, M. Y.; Liu, Y. C. Electrospun nanofibers of p-Type NiO/n-Type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2010, 2, 2915–2923.

13

Cui, B.; Lin, H.; Liu, Y. Z.; Li, J. B.; Sun, P.; Zhao, X. C.; Liu, C. J. Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets. J. Phys. Chem. C 2009, 113, 14083–14087.

14

Liu, J.; Zhang, J. N.; Wang, D.; Li, D. Y.; Ke, J.; Wang, S. B.; Liu, S. M.; Xiao, H. N.; Wang, R. J. Highly dispersed NiCo2O4 nanodots decorated three-dimensional g-C3N4 for enhanced photocatalytic H2 generation. ACS Sustainable Chem. Eng. 2019, 7, 12428–12438.

15

Jiang, J. H.; Shi, W. L.; Guo, F.; Yuan, S. L. Preparation of magnetically separable and recyclable carbon dots/NiCo2O4 composites with enhanced photocatalytic activity for the degradation of tetracycline under visible light. Inorg. Chem. Front. 2018, 5, 1438–1444.

16

Chang, W. X.; Xue, W. H.; Liu, E. Z.; Fan, J.; Zhao, B. R. Highly efficient H2 production over NiCo2O4 decorated G-C3N4 by photocatalytic water reduction. Chem. Eng. J. 2019, 362, 392–401.

17

Wei, R. B.; Huang, Z. L.; Gu, G. H.; Wang, Z.; Zeng, L. X.; Chen, Y. B.; Liu, Z. Q. Dual-cocatalysts decorated rimous CdS spheres advancing highly-efficient visible-light photocatalytic hydrogen production. Appl. Catal. B: Environ. 2018, 231, 101–107.

18

Meng, X. B.; Sheng, J. L.; Tang, H. L.; Sun, X. J.; Dong, H.; Zhang, F. M. Metal-organic framework as nanoreactors to co-incorporate carbon nanodots and CdS quantum dots into the pores for improved H2 evolution without noble-metal cocatalyst. Appl. Catal. B: Environ. 2019, 244, 340–346.

19

Yu, H. J.; Zhao, Y. F.; Zhou, C.; Shang, L.; Peng, Y.; Cao, Y. H.; Wu, L. Z.; Tung, C. H.; Zhang, T. Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2014, 2, 3344–3351.

20

Liu, Y.; Zhao, Y. J.; Sun, Y.; Cao, J. J.; Wang, H.; Wang, X.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. A 4e–2e cascaded pathway for highly efficient production of H2 and H2O2 from water photo-splitting at normal pressure. Appl. Catal. B: Environ. 2020, 270, 118875.

21

Li, Y.; Zhao, Y. J.; Nie, H. D.; Wei, K. Q.; Cao, J. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Interface photo-charge kinetics regulation by carbon dots for efficient hydrogen peroxide production. J. Mater. Chem. A 2021, 9, 515–522.

22

Cao, J. J.; Wu, Q. Y.; Zhao, Y. J.; Wei, K. Q.; Li, Y.; Wang, X.; Liao, F.; Huang, H.; Shao, M. W.; Liu, Y. et al. In-situ photovoltage transients assisted catalytic study on H2O2 photoproduction over organic molecules modified carbon nitride photocatalyst. Appl. Catal. B: Environ. 2021, 285, 119817.

23
Dahlke, S.; Kunoth, A. Biorthogonal wavelets and multigrid. In Proceedings of the Ninth GAMM-Seminar, Wiesbaden, 1994, pp 99–119.
24
Wang, T.; Wang, Y. B.; Monti, A. Fault isolation in the DC distribution grid using current signature analysis. In 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Xi’an, 2019, pp 800–805.
25

Tang, Y. X.; Zhang, D. F.; Qiu, X. X.; Zeng, L.; Huang, B. X.; Li, H.; Pu, X. P.; Geng, Y. L. Fabrication of a NiCo2O4/Zn0.1Cd0.9S p-n heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution. J. Alloys Compd. 2019, 809, 151855.

26

Han, B.; Song, J. N.; Liang, S. J.; Chen, W. Y.; Deng, H.; Ou, X. W.; Xu, Y. J.; Lin, Z. Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering. Appl. Catal. B: Environ. 2020, 260, 118208.

27

Lin, J. H.; Yan, Y. T.; Xu, T. X.; Qu, C. Q.; Li, J.; Cao, J.; Feng, J. C.; Qi, J. L. S doped NiCo2O4 nanosheet arrays by Ar plasma: An efficient and bifunctional electrode for overall water splitting. J. Colloid Interface Sci. 2020, 560, 34–39.

28

Shen, Y. T.; Liang, L. J.; Zhang, S. Q.; Huang, D. S.; Zhang, J.; Xu, S. P.; Liang, C. Y.; Xu, W. Q. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale 2018, 10, 1622–1630.

29

Chakrabarty, S.; Mukherjee, A.; Basu, S. RGO-MoS2 supported NiCo2O4 catalyst toward solar water splitting and dye degradation. ACS Sustainable Chem. Eng. 2018, 6, 5238–5247.

30

Radziuk, D.; Möhwald, H. Ultrasonically treated liquid interfaces for progress in cleaning and separation processes. Phys. Chem. Chem. Phys. 2016, 18, 21–46.

31

Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon 2008, 46, 833–840.

32

Ratso, S.; Kruusenberg, I.; Sarapuu, A.; Rauwel, P.; Saar, R.; Joost, U.; Aruväli, J.; Kanninen, P.; Kallio, T.; Tammeveski, K. Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application. J. Power Sources 2016, 332, 129–138.

33

Liu, Y.; Zhao, Y. J.; Wu, Q. Y.; Wang, X.; Nie, H. D.; Zhou, Y. J.; Huang, H.; Shao, M. W.; Liu, Y.; Kang, Z. H. Charge storage of carbon dot enhances photo-production of H2 and H2O2 over Ni2P/carbon dot catalyst under normal pressure. Chem. Eng. J. 2021, 409, 128184.

34

Zhao, Y. J.; Liu, Y.; Wang, Z. Z.; Ma, Y. R.; Zhou, Y. J.; Shi, X. F.; Wu, Q. Y; Wang, X.; Shao, M. W.; Huang, H. et al. Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B: Environ. 2021, 289, 120035.

35

Li, Y.; Chen, J. X.; Cai, P. W.; Wen, Z. H. An electrochemically neutralized energy-assisted low-cost acid-alkaline electrolyzer for energy-saving electrolysis hydrogen generation. J. Mater. Chem. A 2018, 6, 4948–4954.

36

Zhao, Y. J.; Liu, Y.; Cao, J. J.; Wang, H.; Shao, M. W.; Huang, H.; Liu, Y.; Kang, Z. H. Efficient production of H2O2 via two-channel pathway over ZIF-8/C3N4 composite photocatalyst without any sacrificial agent. Appl. Catal. B: Environ. 2020, 278, 119289.

37

Liang, Q.; Liu, L. J.; Wu, Z. Y.; Nie, H. D.; Shi, H.; Li, Z. Y.; Kang, Z. H. Polytriptycene@CdS double shell hollow spheres with enhanced interfacial charge transfer for highly efficient photocatalytic hydrogen evolution. J. Mater. Chem. A 2021, 9, 9105–9112.

38

Jiang, W. S.; Zhao, Y. J.; Zong, X.; Nie, H. D.; Niu, L. J.; An, L.; Qu, D.; Wang, X. Y.; Kang, Z. H.; Sun, Z. C. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem., Int. Ed. 2021, 60, 6124–6129.

39

Wang, J. W.; Qiao, L. Z.; Nie, H. D.; Huang, H. H.; Li, Y.; Yao, S.; Liu, M.; Zhang, Z. M.; Kang, Z. H.; Lu, T. B. Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction. Nat. Commun. 2021, 12, 813.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 May 2021
Revised: 24 June 2021
Accepted: 28 June 2021
Published: 17 August 2021
Issue date: March 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Nos. 2020YFA0406104, 2020YFA0406101, and 2020YFA0406103), the National MCF Energy R&D Program (No. 2018YFE0306105), Innovative Research Group Project of the National Natural Science Foundation of China (No. 51821002), the National Natural Science Foundation of China (Nos. 51725204, 21771132, 51972216, and 52041202‬), Natural Science Foundation of Jiangsu Province (No. BK20190041), Key-Area Research and Development Program of Guangdong Province (No. 2019B010933001), Collaborative Innovation Center of Suzhou Nano Science & Technology, and the 111 Project.

Return