Journal Home > Volume 15 , Issue 6

The recently developed dual-phase (DP) non-equiatomic Fe50Mn30Co10Cr10 (at.%) high-entropy alloy (HEA) showed much higher strength and ductility compared to the single-phase equiatomic Fe20Mn20Ni20Co20Cr20 (at.%) HEA at room temperature. Herein we probe the cryogenic mechanical properties of the non-equiatomic DP-HEA with different grain sizes and compare with the equiatomic single-phase HEA. Our results show that the cryogenic ultimate tensile strengths of the coarse-grained (~ 200 μm) and fine-grained (~ 4 μm) DP-HEAs reach up to 1,133 and 1,342 MPa, respectively, which are significantly higher than that of the equiatomic single-phase HEAs with similar grain sizes. Furthermore, the fine-grained DP-HEA shows substantial improvement in both strength and ductility compared to the coarse-grained counterparts at cryogenic temperatures. Microstructural analysis reveals that the enhanced mechanical properties of the DP-HEA at cryogenic temperatures are attributed to a more extensive displacive transformation from the face-centered cubic (FCC) matrix into the hexagonal close-packed (HCP) phase compared to that at room temperature. Specifically, the HCP phase fraction in tensile tested fine-grained DP-HEAs increases from ~ 39% to ~ 79% with decreasing temperature from 298 to 77 K. The enhanced transformation behavior is enabled by the reduced stacking fault energy of the material with the decrease of deformation temperatures. The resulting outstanding combination of strength and ductility further suggests that the DP-HEAs are promising candidates as structural materials for cryogenic applications.


menu
Abstract
Full text
Outline
About this article

Cryogenic mechanical behavior of a TRIP-assisted dual-phase high-entropy alloy

Show Author's information Dongyue Li1Zhiming Li2Lu Xie1Yong Zhang3( )Wenrui Wang1( )
School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
School of Materials Science and Engineering, Central South University, Changsha 410083, China
State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China

Abstract

The recently developed dual-phase (DP) non-equiatomic Fe50Mn30Co10Cr10 (at.%) high-entropy alloy (HEA) showed much higher strength and ductility compared to the single-phase equiatomic Fe20Mn20Ni20Co20Cr20 (at.%) HEA at room temperature. Herein we probe the cryogenic mechanical properties of the non-equiatomic DP-HEA with different grain sizes and compare with the equiatomic single-phase HEA. Our results show that the cryogenic ultimate tensile strengths of the coarse-grained (~ 200 μm) and fine-grained (~ 4 μm) DP-HEAs reach up to 1,133 and 1,342 MPa, respectively, which are significantly higher than that of the equiatomic single-phase HEAs with similar grain sizes. Furthermore, the fine-grained DP-HEA shows substantial improvement in both strength and ductility compared to the coarse-grained counterparts at cryogenic temperatures. Microstructural analysis reveals that the enhanced mechanical properties of the DP-HEA at cryogenic temperatures are attributed to a more extensive displacive transformation from the face-centered cubic (FCC) matrix into the hexagonal close-packed (HCP) phase compared to that at room temperature. Specifically, the HCP phase fraction in tensile tested fine-grained DP-HEAs increases from ~ 39% to ~ 79% with decreasing temperature from 298 to 77 K. The enhanced transformation behavior is enabled by the reduced stacking fault energy of the material with the decrease of deformation temperatures. The resulting outstanding combination of strength and ductility further suggests that the DP-HEAs are promising candidates as structural materials for cryogenic applications.

Keywords: high-entropy alloy, grain size, phase transformation, dual phase, cryogenic mechanical behavior

References(65)

1

Yin, Y.; Tan, Q. Y.; Zhao, Y. T.; Sun, Q.; Shi, Z. M.; Bermingham, M.; Zhuang, W. M.; Huang, H.; Zhang, M. X. A cost-effective Fe-rich compositionally complicated alloy with superior high-temperature oxidation resistance. Corros. Sci. 2021, 180, 109190.

2

Xu, Q.; Guan, H. Q.; Zhong, Z. H.; Huang, S. S.; Zhao, J. J. Irradiation resistance mechanism of the CoCrFeMnNi equiatomic high-entropy alloy. Sci. Rep. 2021, 11, 608.

3

Yang, T. F.; Guo, W.; Poplawsky, J. D.; Li, D. Y.; Wang, L.; Li, Y.; Hu, W. Y.; Crespillo, M. L.; Yan, Z. F.; Zhang, Y. et al. Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation. Acta Mater. 2020, 188, 1–15.

4

Luo, H.; Li, Z. M.; Mingers, A. M.; Raabe, D. Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corros. Sci. 2018, 134, 131–139.

5

Wang, W. R.; Wang, J. Q.; Sun, Z. H.; Li, J. T.; Li, L. F.; Song, X.; Wen, X. D.; Xie, L.; Yang, X. Effect of Mo and aging temperature on corrosion behavior of (CoCrFeNi)100-xMox high-entropy alloys. J. Alloys Compd. 2020, 812, 152139.

6

Nair, R.; Arora, H. S.; Mukherjee, S.; Singh, S.; Singh, H.; Grewal, H. S. Exceptionally high cavitation erosion and corrosion resistance of a high entropy alloy. Ultrason. Sonochem. 2018, 41, 252–260.

7

Yang, X.; Zhang, H. X.; Cheng, B. Y.; Liu, Y. Q.; Yan, Z. F.; Dong, P.; Wang, W. X. Microstructural, Microhardness and tribological analysis of cooling-assisted friction stir processing of high-entropy alloy particles reinforced aluminum alloy surface composites. Surf. Topogr.: Metrol. Prop. 2020, 8, 035012.

8

Li, D. Y.; Gao, M. C.; Hawk, J. A.; Zhang, Y. Annealing effect for the Al0.3CoCrFeNi high-entropy alloy fibers. J. Alloys Compd. 2019, 778, 23–29.

9

Yeh, J. W.; Chen, S. K.; Lin, S. J.; Gan, J. Y.; Chin, T. S.; Shun, T. T.; Tsau, C. H.; Chang, S. Y. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 2004, 6, 299–303.

10

Cantor, B.; Chang, I. T. H.; Knight, P.; Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng.: A 2004, 375-377, 213–218.

11

Zhang, Y.; Zuo, T. T.; Tang, Z.; Gao, M. C.; Dahmen, K. A.; Liaw, P. K.; Lu, Z. P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93.

12

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

13

Lu, Z. P.; Wang, H.; Chen, M. W.; Baker, I.; Yeh, J. W.; Liu, C. T.; Nieh, T. G. An assessment on the future development of high-entropy alloys: Summary from a recent workshop. Intermetallics 2015, 66, 67–76.

14

George, E. P.; Raabe, D.; Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 2019, 4, 515–534.

15

Tong, Y.; Chen, D.; Han, B.; Wang, J.; Feng, R.; Yang, T.; Zhao, C.; Zhao, Y. L.; Guo, W.; Shimizu, Y. et al. Outstanding tensile properties of a precipitation-strengthened FeCoNiCrTi0.2 high-entropy alloy at room and cryogenic temperatures. Acta Mater. 2019, 165, 228–240.

16

Li, D. Y.; Li, C. X.; Feng, T.; Zhang, Y. D.; Sha, G.; Lewandowski, J. J.; Liaw, P. K.; Zhang, Y. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures. Acta Mater. 2017, 123, 285–294.

17

Gludovatz, B.; Hohenwarter, A.; Catoor, D.; Chang, E. H.; George, E. P.; Ritchie, R. O. A fracture-resistant high-entropy alloy for cryogenic applications. Science 2014, 345, 1153–1158.

18

Laplanche, G.; Bonneville, J.; Varvenne, C.; Curtin, W. A.; George, E. P. Thermal activation parameters of plastic flow reveal deformation mechanisms in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2018, 143, 257–264.

19

Li, Z. H.; Zhao, S. T.; Alotaibi, S. M.; Liu, Y.; Wang, B. F.; Meyers, M. A. Adiabatic shear localization in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2018, 151, 424–431.

20

Ding, Q. Q.; Fu, X. Q.; Chen, D. K.; Bei, H. B.; Gludovatz, B.; Li, J. X.; Zhang, Z.; George, E. P.; Yu, Q.; Zhu, T. et al. Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Mater. Today 2019, 25, 21–27.

21

Jo, Y. H.; Yang, J.; Doh, K. Y.; An, W.; Kim, D. W.; Sung, H.; Lee, D.; Kim, H. S.; Sohn, S. S.; Lee, S. Analysis of damage-tolerance of TRIP-assisted V10Cr10Fe45Co30Ni5 high-entropy alloy at room and cryogenic temperatures. J. Alloys Compd. 2020, 844, 156090.

22

Bian, B. B.; Guo, N.; Yang, H. J.; Guo, R. P.; Yang, L.; Wu, Y. C.; Qiao, J. W. A novel cobalt-free FeMnCrNi medium-entropy alloy with exceptional yield strength and ductility at cryogenic temperature. J. Alloys Compd. 2020, 827, 153981.

23

Stepanov, N.; Tikhonovsky, M.; Yurchenko, N.; Zyabkin, D.; Klimova, M.; Zherebtsov, S.; Efimov, A.; Salishchev, G. Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy. Intermetallics 2015, 59, 8–17.

24

Gludovatz, B.; Hohenwarter, A.; Thurston, K. V. S.; Bei, H. B.; Wu, Z. G.; George, E. P.; Ritchie, R. O. Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 2016, 7, 10602.

25

Laplanche, G.; Kostka, A.; Horst, O. M.; Eggeler, G.; George, E. P. Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 2016, 118, 152–163.

26

Zhang, Z. J.; Sheng, H. W.; Wang, Z. J.; Gludovatz, B.; Zhang, Z.; George, E. P.; Yu, Q.; Mao, S. X.; Ritchie, R. O. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 2017, 8, 14390.

27

Huang, S.; Li, W.; Lu, S.; Tian, F. Y.; Shen, J.; Holmström, E.; Vitos, L. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy. Scr. Mater. 2015, 108, 44–47.

28

Wei, D. X.; Li, X. Q.; Jiang, J.; Heng, W. C.; Koizumi, Y.; Choi, W. M.; Lee, B. J.; Kim, H. S.; Kato, H.; Chiba, A. Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys. Scr. Mater. 2019, 165, 39–43.

29

Zaddach, A. J.; Niu, C.; Koch, C. C.; Irving, D. L. Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 2013, 65, 1780–1789.

30

Gong, Y. L.; Wen, C. E.; Li, Y. C.; Wu, X. X.; Cheng, L. P.; Han, X. C.; Zhu, X. K. Simultaneously enhanced strength and ductility of Cu–xGe alloys through manipulating the stacking fault energy (SFE). Mater. Sci. Eng.: A 2013, 569, 144–149.

31

Bahmanpour, H.; Kauffmann, A.; Khoshkhoo, M. S.; Youssef, K. M.; Mula, S.; Freudenberger, J.; Eckert, J.; Scattergood, R. O.; Koch, C. C. Effect of stacking fault energy on deformation behavior of cryo-rolled copper and copper alloys. Mater. Sci. Eng.: A 2011, 529, 230–236.

32

Xu, X. D.; Liu, P.; Tang, Z.; Hirata, A.; Song, S. X.; Nieh, T. G.; Liaw, P. K.; Liu, C. T.; Chen, M. W. Transmission electron microscopy characterization of dislocation structure in a face-centered cubic high-entropy alloy Al0.1CoCrFeNi. Acta Mater. 2018, 144, 107–115.

33

Feng, R.; Gao, M. C.; Zhang, C.; Guo, W.; Poplawsky, J. D.; Zhang, F.; Hawk, J. A.; Neuefeind, J. C.; Ren, Y.; Liaw, P. K. Phase stability and transformation in a light-weight high-entropy alloy. Acta Mater. 2018, 146, 280–293.

34

Nene, S. S.; Frank, M.; Liu, K.; Mishra, R. S.; McWilliams, B. A.; Cho, K. C. Extremely high strength and work hardening ability in a metastable high entropy alloy. Sci. Rep. 2018, 8, 9920.

35

Stepanov, N. D.; Shaysultanov, D. G.; Chernichenko, R. S.; Ikornikov, D. M.; Sanin, V. N.; Zherebtsov, S. V. Mechanical properties of a new high entropy alloy with a duplex ultra-fine grained structure. Mater. Sci. Eng.: A 2018, 728, 54–62.

36

Fang, Q. H.; Chen, Y.; Li, J.; Jiang, C.; Liu, B.; Liu, Y.; Liaw, P. K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. Int. J. Plast. 2019, 114, 161–173.

37

Tasan, C. C.; Diehl, M.; Yan, D.; Bechtold, M.; Roters, F.; Schemmann, L.; Zheng, C.; Peranio, N.; Ponge, D.; Koyama, M. et al. An overview of dual-phase steels: Advances in microstructure-oriented processing and micromechanically guided design. Ann. Rev. Mater. Res. 2015, 45, 391–431.

38

Singh, S.; Wanderka, N.; Murty, B. S.; Glatzel, U.; Banhart, J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011, 59, 182–190.

39

Lei, Z. F.; Liu, X. J.; Wu, Y.; Wang, H.; Jiang, S. H.; Wang, S. D.; Hui, X. D.; Wu, Y. D.; Gault, B.; Kontis, P. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 2018, 563, 546–550.

40

Li, Z. M.; Pradeep, K. G.; Deng, Y.; Raabe, D.; Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 2016, 534, 227–230.

41

Huang, H. L.; Wu, Y.; He, J. Y.; Wang, H.; Liu, X. J.; An, K.; Wu, W.; Lu, Z. P. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 2017, 29, 1701678.

42

Li, Z. M.; Raabe, D. Influence of compositional inhomogeneity on mechanical behavior of an interstitial dual-phase high-entropy alloy. Mater. Chem. Phys. 2018, 210, 29–36.

43

Chen, S. Y.; Tong, Y.; Tseng, K. K.; Yeh, J. W.; Poplawsky, J. D.; Wen, J. G.; Gao, M. C.; Kim, G.; Chen, W.; Ren, Y. et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr. Mater. 2019, 158, 50–56.

44

Wang, Z. W.; Lu, W. J.; Raabe, D.; Li, Z. M. On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. J. Alloys Compd. 2019, 781, 734–743.

45

Li, Z. M.; Tasan, C. C.; Pradeep, K. G.; Raabe, D. A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Mater. 2017, 131, 323–335.

46

Lin, Q. Y.; Liu, J. P.; An, X. H.; Wang, H.; Zhang, Y.; Liao, X. Z. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy. Mater. Res. Lett. 2018, 6, 236–243.

47

Li, Z. M.; Raabe, D. Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 2017, 69, 2099–2106.

48

Li, Z. M.; Körmann, F.; Grabowski, B.; Neugebauer, J.; Raabe, D. Ab initio assisted design of quinary dual-phase high-entropy alloys with transformation-induced plasticity. Acta Mater. 2017, 136, 262–270.

49

Otto, F.; Dlouhý, A.; Somsen, C.; Bei, H.; Eggeler, G.; George, E. P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013, 61, 5743–5755.

50

Thomson, R. D.; Hancock, J. W. Ductile failure by void nucleation, growth and coalescence. Int. J. Fract. 1984, 26, 99–112.

51

Qiao, J. W.; Ma, S. G.; Huang, E. W.; Chuang, C. P.; Liaw, P. K.; Zhang, Y. Microstructural characteristics and mechanical behaviors of alcocrfeni high-entropy alloys at ambient and cryogenic temperatures. Mater. Sci. Forum 2011, 688, 419–425.

52

Nguyen, K.; Zhang, M. J.; Amores, V. J.; Sanz, M. A.; Montáns, F. J. Computational modeling of dislocation slip mechanisms in crystal plasticity: A short review. Crystals 2021, 11, 42.

53

Hansen, N. Hall–petch relation and boundary strengthening. Scr. Mater. 2004, 51, 801–806.

54

Pisarik, S. T.; Van Aken, D. C. Thermodynamic driving force of the γ→ ε transformation and resulting Ms temperature in high-Mn steels. Metall. Mater. Trans. A 2016, 47, 1009–1018.

55

Sohn, S. S.; Song, H.; Jo, M. C.; Song, T.; Kim, H. S.; Lee, S. Novel 1.5 GPa-strength with 50%-ductility by transformation-induced plasticity of non-recrystallized austenite in duplex steels. Sci. Rep. 2017, 7, 1255.

56

He, B. B.; Huang, M. X. Strong and ductile medium Mn steel without transformation-induced plasticity effect. Mater. Res. Lett. 2018, 6, 365–371.

57

Cai, Z. H.; Ding, H.; Misra, R. D. K.; Ying, Z. Y. Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content. Acta Mater. 2015, 84, 229–236.

58

Cotes, S. M.; Guillermet, A. F.; Sade, M. Fcc/Hcp martensitic transformation in the Fe-Mn system: Part II. Driving force and thermodynamics of the nucleation process. Metall. Mater. Trans. A 2004, 35, 83–91.

59

Yang, H. S.; Bhadeshia, H. K. D. H. Austenite grain size and the martensite-start temperature. Scr. Mater. 2009, 60, 493–495.

60

Cai, M. H.; Zhu, W. J.; Stanford, N.; Pan, L. B.; Chao, Q.; Hodgson, P. D. Dependence of deformation behavior on grain size and strain rate in an ultrahigh strength-ductile Mn-based TRIP alloy. Mater. Sci. Eng.: A 2016, 653, 35–42.

61

Li, W. D.; Xie, D.; Li, D. Y.; Zhang, Y.; Gao, Y. F.; Liaw, P. K. Mechanical behavior of high-entropy alloys. Prog. Mater. Sci. 2021, 118, 100777.

62

Basu, S.; Li, Z. M.; Pradeep, K. G.; Raabe, D. Strain rate sensitivity of a TRIP-assisted dual-phase high-entropy alloy. Front. Mater. 2018, 5, 30.

63

Gali, A.; George, E. P. Tensile properties of high-and medium-entropy alloys. Intermetallics 2013, 39, 74–78.

64

Jo, Y. H.; Jung, S.; Choi, W. M.; Sohn, S. S.; Kim, H. S.; Lee, B. J.; Kim, N. J.; Lee, S. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. 2017, 8, 15719.

65

Li, D. Y.; Zhang, Y. The ultrahigh charpy impact toughness of forged AlxCoCrFeNi high entropy alloys at room and cryogenic temperatures. Intermetallics 2016, 70, 24–28.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2021
Revised: 10 June 2021
Accepted: 28 June 2021
Published: 17 August 2021
Issue date: June 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2020YFA0405700). The authors would like to gratefully acknowledge the financial support from Chinese Postdoctoral Science Foundation (No. 2020M680343) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-20-050A1).

Return