Journal Home > Volume 14 , Issue 11

Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 ℃ and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H2O2). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin-shell epitaxial Ag@Au core-shell nanowires for high-performance and chemically-stable electronic, optical, and mechanical devices

Show Author's information Yangzhi Zhu1,2Sanggon Kim1Xuezhi Ma3Peter Byrley1Ning Yu1Qiushi Liu3Xiaoming Sun4Da Xu3Sangshan Peng5Martin C. Hartel6Shiming Zhang7Vadim Jucaud2Mehmet R. Dokmeci2Ali Khademhosseini2Ruoxue Yan1,8( )
Department of Chemical and Environmental Engineering Bourns College of Engineering University of California-Riverside Riverside CA 92521 USA
Terasaki Institute for Biomedical Innovation Los Angeles CA 90064 USA
Department of Electrical and Computer Engineering University of California-Riverside Riverside CA 92521 USA
State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing 100029 China
State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
Department of Bioengineering University of California-Los Angeles Los Angeles CA 90095 USA
Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong China
Material Science and Engineering Program University of California-Riverside Riverside CA 92521 USA

Abstract

Silver nanowires (AgNWs) hold great promise for applications in wearable electronics, flexible solar cells, chemical and biological sensors, photonic/plasmonic circuits, and scanning probe microscopy (SPM) due to their unique plasmonic, mechanical, and electronic properties. However, the lifetime, reliability, and operating conditions of AgNW-based devices are significantly restricted by their poor chemical stability, limiting their commercial potentials. Therefore, it is crucial to create a reliable oxidation barrier on AgNWs that provides long-term chemical stability to various optical, electrical, and mechanical devices while maintaining their high performance. Here we report a room-temperature solution-phase approach to grow an ultra-thin, epitaxial gold coating on AgNWs to effectively shield the Ag surface from environmental oxidation. The Ag@Au core-shell nanowires (Ag@Au NWs) remain stable in air for over six months, under elevated temperature and humidity (80 ℃ and 100% humidity) for twelve weeks, in physiological buffer solutions for three weeks, and can survive overnight treatment of an oxidative solution (2% H2O2). The Ag@Au core-shell NWs demonstrated comparable performance as pristine AgNWs in various electronic, optical, and mechanical devices, such as transparent mesh electrodes, surface-enhanced Raman spectroscopy (SERS) substrates, plasmonic waveguides, plasmonic nanofocusing probes, and high-aspect-ratio, high-resolution atomic force microscopy (AFM) probes. These Au@Ag core-shell NWs offer a universal solution towards chemically-stable AgNW-based devices without compromising material property or device performance.

Keywords: epitaxial growth, wearable electronics, transparent electrode, plasmonic waveguides, core-shell nanowire, atomic force microscopy (AFM) probe

References(67)

1

Li, W. W.; Yang, S.; Shamim, A. Screen printing of silver nanowires: Balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flex. Electron. 2019, 3, 13.

2

Lee, E.; Ahn, J.; Kwon, H. C.; Ma, S.; Kim, K.; Yun, S.; Moon, J. All-solution-processed silver nanowire window electrode-based flexible perovskite solar cells enabled with amorphous metal oxide protection. Adv. Energy Mater. 2018, 8, 1702182.

3

Chen, C. R.; Qin, H. L.; Cong, H. P.; Yu, S. H. A highly stretchable and real-time healable supercapacitor. Adv. Mater. 2019, 31, 1900573.

4

Ma, Z. L.; Kang, S. L.; Ma, J. Z.; Shao, L.; Wei, A. J.; Liang, C. B.; Gu, J. W.; Yang, B.; Dong, D. D.; Wei, L. F. et al. High-performance and rapid-response electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 2019, 13, 7578–7590.

5

Chung, W. H.; Park, S. H.; Joo, S. J.; Kim, H. S. UV-assisted flash light welding process to fabricate silver nanowire/graphene on a PET substrate for transparent electrodes. Nano Res. 2018, 11, 2190–2203.

6

Araki, T.; Jiu, J. T.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Res. 2014, 7, 236–245.

7

Kim, S.; Yan, R. X. Recent developments in photonic, plasmonic and hybrid nanowire waveguides. J. Mater. Chem. C 2018, 6, 11795– 11816.

8

Qin, Q. Q.; Yin, S.; Cheng, G. M.; Li, X. Y.; Chang, T. H.; Richter, G.; Zhu, Y.; Gao, H. J. Recoverable plasticity in penta-twinned metallic nanowires governed by dislocation nucleation and retraction. Nat. Commun. 2015, 6, 5983.

9

Jo, H. S.; An, S.; Park, C. W.; Woo, D. Y.; Yarin, A. L.; Yoon, S. S. Wearable, stretchable, transparent all-in-one soft sensor formed from supersonically sprayed silver nanowires. ACS Appl. Mater. Interfaces 2019, 11, 40232–40242.

10

Kim, T.; Kang, S.; Heo, J.; Cho, S.; Kim, J. W.; Choe, A.; Walker, B.; Shanker, R.; Ko, H.; Kim, J. Y. Nanoparticle-enhanced silver-nanowire plasmonic electrodes for high-performance organic optoelectronic devices. Adv. Mater. 2018, 30, 1800659.

11

Liu, Q. S.; Kim, S.; Ma, X. Z.; Yu, N.; Zhu, Y. Z.; Deng, S. Y.; Yan, R. X.; Zhao, H. J.; Liu, M. Ultra-sharp and surfactant-free silver nanowire for scanning tunneling microscopy and tip-enhanced Raman spectroscopy. Nanoscale 2019, 11, 7790–7797.

12

Liu, J. W.; Wang, J. L.; Huang, W. R.; Yu, L.; Ren, X. F.; Wen, W. C.; Yu, S. H. Ordering Ag nanowire arrays by a glass capillary: A portable, reusable and durable SERS substrate. Sci. Rep. 2012, 2, 987.

13

Kim, S.; Yu, N.; Ma, X. Z.; Zhu, Y. Z.; Liu, Q. S.; Liu, M.; Yan, R. X. High external-efficiency nanofocusing for lens-free near-field optical nanoscopy. Nat. Photonics 2019, 13, 636–643.

14

Ma, X. Z.; Zhu, Y. Z.; Yu, N.; Kim, S.; Liu, Q. S.; Apontti, L.; Xu, D.; Yan, R. X.; Liu, M. Toward high-contrast atomic force microscopy- tip-enhanced Raman spectroscopy imaging: Nanoantenna-mediated remote-excitation on sharp-tip silver nanowire probes. Nano Lett. 2019, 19, 100–107.

15

Ma, X. Z.; Zhu, Y. Z.; Kim, S.; Liu, Q. S.; Byrley, P.; Wei, Y.; Zhang, J.; Jiang, K. L.; Fan, S. S.; Yan, R. X. et al. Sharp-tip silver nanowires mounted on cantilevers for high-aspect-ratio high-resolution imaging. Nano Lett. 2016, 16, 6896–6902.

16

Choo, D. C.; Kim, T. W. Degradation mechanisms of silver nanowire electrodes under ultraviolet irradiation and heat treatment. Sci. Rep. 2017, 7, 1696.

17

Elechiguerra, J. L.; Larios-Lopez, L.; Liu, C.; Garcia-Gutierrez, D.; Camacho-Bragado, A.; Yacaman, M. J. Corrosion at the nanoscale: The case of silver nanowires and nanoparticles. Chem. Mater. 2005, 17, 6042–6052.

18

Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Silver nanowire-embedded PDMS with a multiscale structure for a highly sensitive and robust flexible pressure sensor. Nanoscale 2015, 7, 6208–6215.

19

Li, Y. X.; Han, D. Y.; Jiang, C. J.; Xie, E. Q.; Han, W. H. A facile realization scheme for tactile sensing with a structured silver nanowire-PDMS composite. Adv. Mater. Technol. 2019, 4, 1800504.

20

Oh, J. Y.; Lee, D.; Hong, S. H. Ice-templated bimodal-porous silver nanowire/PDMS nanocomposites for stretchable conductor. ACS Appl. Mater. Interfaces 2018, 10, 21666–21671.

21

Dan, L.; Shi, S.; Chung, H. J.; Elias, A. Porous polydimethylsiloxane– silver nanowire devices for wearable pressure sensors. ACS Appl. Nano Mater. 2019, 2, 4869–4878.

22

Cheng, C.; Xu, X. H.; Lei, H. X.; Li, B. J. Plasmon-assisted trapping of nanoparticles using a silver-nanowire-embedded PMMA nanofiber. Sci. Rep. 2016, 6, 20433.

23

Li, W. W.; Meredov, A.; Shamim, A. Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flex. Electron. 2019, 3, 19.

24

Nair, N. M.; Pakkathillam, J. K.; Kumar, K.; Arunachalam, K.; Ray, D.; Swaminathan, P. Printable silver nanowire and PEDOT: PSS nanocomposite ink for flexible transparent conducting applications. ACS Appl. Electron. Mater. 2020, 2, 1000–1010.

25

Thomas, J. P.; Rahman, M. A.; Srivastava, S.; Kang, J. S.; McGillivray, D.; Abd-Ellah, M.; Heinig, N. F.; Leung, K. T. Highly conducting hybrid silver-nanowire-embedded poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) for high-efficiency planar silicon/organic heterojunction solar cells. ACS Nano 2018, 12, 9495–9503.

26

Li, S. Y.; Chen, S. J.; Zhuo, B. G.; Li, Q. F.; Liu, W. J.; Guo, X. J. Flexible ammonia sensor based on PEDOT: PSS/Silver nanowire composite film for meat freshness monitoring. IEEE Electron Device Lett. 2017, 38, 975–978.

27

Ricciardulli, A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M. Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics. Adv. Funct. Mater. 2018, 28, 1706010.

28

Yang, Y.; Chen, S.; Li, W. L.; Li, P.; Ma, J. G.; Li, B. S.; Zhao, X. N.; Ju, Z. S.; Chang, H. C.; Xiao, L. et al. Reduced graphene oxide conformally wrapped silver nanowire networks for flexible transparent heating and electromagnetic interference shielding. ACS Nano 2020, 14, 8754–8765.

29

Cao, M. H.; Wang, M. Q.; Li, L.; Qiu, H. W.; Padhiar, M. A.; Yang, Z. Wearable rGO-Ag NW@cotton fiber piezoresistive sensor based on the fast charge transport channel provided by Ag nanowire. Nano Energy 2018, 50, 528–535.

30

Huang, G. W.; Li, N.; Liu, Y.; Qu, C. B.; Feng, Q. P.; Xiao, H. M. Binder-free graphene/silver nanowire gel-like composite with tunable properties and multifunctional applications. ACS Appl. Mater. Interfaces 2019, 11, 15028–15037.

31

Fang, Y. S.; Wu, Z. C.; Li, J.; Jiang, F. Y.; Zhang, K.; Zhang, Y. L.; Zhou, Y. H.; Zhou, J.; Hu, B. High-performance hazy silver nanowire transparent electrodes through diameter tailoring for semitransparent photovoltaics. Adv. Funct. Mater. 2018, 28, 1705409.

32

Park, M.; Lee, S. H.; Kim, D.; Kang, J.; Lee, J. Y.; Han, S. M. Fabrication of a combustion-reacted high-performance ZnO electron transport layer with silver nanowire electrodes for organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 7214–7222.

33

Kang, H.; Choi, S. R.; Kim, Y. H.; Kim, J. S.; Kim, S.; An, B. S.; Yang, C. W.; Myoung, J. M.; Lee, T. W.; Kim, J. G. et al. Electroplated silver–nickel core–shell nanowire network electrodes for highly efficient perovskite nanoparticle light-emitting diodes. ACS Appl. Mater. Interfaces 2020, 12, 39479–39486.

34

Zhang, L. W.; Ji, Y.; Qiu, Y. J.; Xu, C. W.; Liu, Z. G.; Guo, Q. Q. Highly thermal-stable and transparent silver nanowire conductive films via magnetic assisted electrodeposition of Ni. J. Mater. Chem. C 2018, 6, 4887–4894.

35

Zhou, K. L.; Zhang, Q. Q.; Wang, Z. L.; Wang, C. H.; Han, C. B.; Ke, X. X.; Zheng, Z. L.; Wang, H.; Liu, J. B.; Yan, H. A setaria- inflorescence-structured catalyst based on nickel–cobalt wrapped silver nanowire conductive networks for highly efficient hydrogen evolution. J. Mater. Chem. A 2019, 7, 26566–26573.

36

Martinez, P. M.; Ishteev, A.; Fahimi, A.; Velten, J.; Jurewicz, I.; Dalton, A. B.; Collins, S.; Baughman, R. H.; Zakhidov, A. A. Silver nanowires on carbon nanotube aerogel sheets for flexible, transparent electrodes. ACS Appl. Mater. Interfaces 2019, 11, 32235–32243.

37

Lee, J.; Woo, J. Y.; Kim, J. T.; Lee, B. Y.; Han, C. S. Synergistically enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding. ACS Appl. Mater. Interfaces 2014, 6, 10974–10980.

38

Sun, Y. N.; Chang, M. J.; Meng, L. X.; Wan, X. J.; Gao, H. H.; Zhang, Y. M.; Zhao, K.; Sun, Z. H.; Li, C. X.; Liu, S. R. et al. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520.

39

Khan, A.; Nguyen, V. H.; Muñoz-Rojas, D.; Aghazadehchors, S.; Jiménez, C.; Nguyen, N. D.; Bellet, D. Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 2018, 10, 19208–19217.

40

Nguyen, V. H.; Resende, J.; Papanastasiou, D. T.; Fontanals, N.; Jiménez, C.; Muñoz-Rojas, D.; Bellet, D. Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: Impact of the network density. Nanoscale 2019, 11, 12097–12107.

41

Zhao, Y.; Wang, X. J.; Yang, S. Z.; Kuttner, E.; Taylor, A. A.; Salemmilani, R.; Liu, X.; Moskovits, M.; Wu, B. H.; Dehestani, A. et al. Protecting the nanoscale properties of ag nanowires with a solution-grown SnO2 monolayer as corrosion inhibitor. J. Am. Chem. Soc. 2019, 141, 13977–13986.

42

Yang, Y.; Dong, R. Z.; Zhu, Y. L.; Li, H. S.; Zhang, H.; Fan, X. M.; Chang, H. L. High-performance direct hydrogen peroxide fuel cells (DHPFCs) with silver nanowire-graphene hybrid aerogel as highly- conductive mesoporous electrodes. Chem. Eng. J. 2020, 381, 122749.

43

Yang, M. X.; Hood, Z. D.; Yang, X.; Chi, M. F.; Xia, Y. N. Facile synthesis of Ag@Au core–sheath nanowires with greatly improved stability against oxidation. Chem. Commun. 2017, 53, 1965–1968.

44

Choi, S.; Han, S. I.; Jung, D.; Hwang, H. J.; Lim, C.; Bae, S.; Park, O. K.; Tschabrunn, C. M.; Lee, M.; Bae, S. Y. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056.

45

Huang, Z. L.; Meng, G. W.; Hu, X. Y.; Pan, Q. J.; Huo, D. X.; Zhou, H. J.; Ke, Y.; Wu, N. Q. Plasmon-tunable Au@Ag core-shell spiky nanoparticles for surface-enhanced Raman scattering. Nano Res. 2019, 12, 449–455.

46

Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surface-enhanced Raman scattering inside Au@Ag core/shell nanorods. Nano Res. 2016, 9, 2303–2318.

47

Wang, D. M.; Hua, H. M.; Liu, Y.; Tang, H. R.; Li, Y. X. Single Ag nanowire electrodes and single Pt@Ag nanowire electrodes: Fabrication, electrocatalysis, and surface-enhanced Raman scattering applications. Anal. Chem. 2019, 91, 4291–4295.

48

Zhang, L.; Zhang, Y.; Ahn, J.; Wang, X.; Qin, D. Defect-assisted deposition of Au on Ag for the fabrication of core–shell nanocubes with outstanding chemical and thermal stability. Chem. Mater. 2019, 31, 1057–1065.

49

Au, L.; Lu, X. M.; Xia, Y. N. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4. Adv. Mater. 2008, 20, 2517–2522.

50

Niu, Z. Q.; Cui, F.; Yu, Y.; Becknell, N.; Sun, Y. C.; Khanarian, G.; Kim, D.; Dou, L.; Dehestani, A.; Schierle-Arndt, K. et al. Ultrathin epitaxial Cu@Au core–shell nanowires for stable transparent conductors. J. Am. Chem. Soc. 2017, 139, 7348–7354.

51

Gao, C. B.; Lu, Z. D.; Liu, Y.; Zhang, Q.; Chi, M. F.; Cheng, Q.; Yin, Y. D. Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew. Chem. , Int. Ed. 2012, 51, 5629–5633.

52

Xue, C.; Chen, X.; Hurst, S. J.; Mirkin, C. A. Self-assembled monolayer mediated silica coating of silver triangular nanoprisms. Adv. Mater. 2007, 19, 4071–4074.

53

Gao, C. B.; Zhang, Q.; Lu, Z. D.; Yin, Y. D. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc. 2011, 133, 19706–19709.

54

Hu, L. B.; Kim, H. S.; Lee, J. Y.; Peumans, P.; Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 2010, 4, 2955–2963.

55

Liu, H. P.; Liu, T. Z.; Zhang, L.; Han, L.; Gao, C. B.; Yin, Y. D. Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv. Funct. Mater. 2015, 25, 5435–5443.

56

Yang, Y.; Liu, J. Y.; Fu, Z. W.; Qin, D. Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. J. Am. Chem. Soc. 2014, 136, 8153–8156.

57

Choi, Y.; Hong, S.; Liu, L. C.; Kim, S. K.; Park, S. Galvanically replaced hollow Au–Ag nanospheres: Study of their surface plasmon resonance. Langmuir 2012, 28, 6670–6676.

58

Cui, F.; Yu, Y.; Dou, L. T.; Sun, J. W.; Yang, Q.; Schildknecht, C.; Schierle-Arndt, K.; Yang, P. D. Synthesis of ultrathin copper nanowires using tris(trimethylsilyl)silane for high-performance and low-haze transparent conductors. Nano Lett. 2015, 15, 7610–7615.

59

Rathmell, A. R.; Wiley, B. J. The synthesis and coating of long, thin copper nanowires to make flexible, transparent conducting films on plastic substrates. Adv. Mater. 2011, 23, 4798–4803.

60

Hecht, D. S.; Heintz, A. M.; Lee, R.; Hu, L. B.; Moore, B.; Cucksey, C.; Risser, S. High conductivity transparent carbon nanotube films deposited from superacid. Nanotechnology 2011, 22, 075201.

61

Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421–428.

62

Ye, S. R.; Rathmell, A. R.; Stewart, I. E.; Ha, Y. C.; Wilson, A. R.; Chen, Z. F.; Wiley, B. J. A rapid synthesis of high aspect ratio copper nanowires for high-performance transparent conducting films. Chem. Commun. 2014, 50, 2562–2564.

63

Yan, R. X.; Pausauskie, P.; Huang, J. X.; Yang, P. D. Direct photonic–plasmonic coupling and routing in single nanowires. Proc. Natl. Acad. Sci. USA 2009, 106, 21045–21050.

64

Kim, S.; Bailey, S.; Liu, M.; Yan, R. X. Decoupling co-existing surface plasmon polariton (SPP) modes in a nanowire plasmonic waveguide for quantitative mode analysis. Nano Res. 2017, 10, 2395–2404.

65

Yan, R. X.; Park, J. H.; Choi, Y.; Heo, C. J.; Yang, S. M.; Lee, L. P.; Yang, P. D. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 2012, 7, 191–196.

66

Lee, W.; Kang, B. H.; Yang, H.; Park, M.; Kwak, J. H.; Chung, T.; Jeong, Y.; Kim, B. K.; Jeong, K. H. Spread spectrum SERS allows label-free detection of attomolar neurotransmitters. Nat. Commun. 2021, 12, 159.

67

Yeh, Y. T.; Gulino, K.; Zhang, Y. H.; Sabestien, A.; Chou, T. W.; Zhou, B.; Lin, Z.; Albert, I.; Lu, H. G.; Swaminathan, V. et al. A rapid and label-free platform for virus capture and identification from clinical samples. Proc. Natl. Acad. Sci. USA 2020, 117, 895–901.

File
12274_2021_3718_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 April 2021
Revised: 22 June 2021
Accepted: 23 June 2021
Published: 07 August 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This material is based upon work supported by the National Science Foundation under gant No. CHE-1654794. The authors acknowledge Prof. Yadong Yin from the Department of Chemistry, UC Riverside for helpful discussion.

Rights and permissions

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return