Journal Home > Volume 14 , Issue 10

The development of pressure sensor arrays capable of distinguishing the shape and texture details of objects is of considerable interest in the emerging fields of smart robots, prostheses, human–machine interfaces, and artificial intelligence (AI). Here we report an integrated pressure sensor array, by combining solution-processed two-dimensional (2D) MoS2 van der Waals (vdW) thin film transistor (TFT) active matrix and conductive micropyramidal pressure-sensitive rubber (PSR) electrodes made of polydimethylsiloxane/ carbon nanotube composites, to achieve spatially revolved pressure mapping with excellent contrast and low power consumption. We demonstrate a 10 × 10 active matrix by using the 2D MoS2 vdW-TFTs with high on-off ratio > 106, minimal hysteresis, and excellent device-to-device uniformity. The combination of the vdW-TFT active matrix with the highly uniform micropyramidal PSR electrodes creates an integrated pressure sensing array for spatially resolved pressure mapping. This study demonstrates that the solution-processed 2D vdW-TFTs offer a solution for active-matrix control of pressure sensor arrays, and could be extended for other active-matrix arrays of electronic or optoelectronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Two-dimensional van der Waals thin film transistors as active matrix for spatially resolved pressure sensing

Show Author's information Chao Ma1,2,§Dong Xu1,§Peiqi Wang3Zhaoyang Lin3Jingyuan Zhou3Chuancheng Jia3Jin Huang1Shengtao Li2Yu Huang1,4( )Xiangfeng Duan3,4( )
Department of Materials Science and Engineering,University of California,Los Angeles, CA,90095,USA;
State Key Laboratory of Electrical Insulation and Power Equipment,Xi'an Jiaotong University,Xi'an,710049,China;
Department of Chemistry and Biochemistry,University of California,Los Angeles, CA,90095,USA;
Department of Chemistry and Biochemistry,University of California,Los Angeles, CA,90095,USA;

§Chao Ma and Dong Xu contributed equally to this work.

Abstract

The development of pressure sensor arrays capable of distinguishing the shape and texture details of objects is of considerable interest in the emerging fields of smart robots, prostheses, human–machine interfaces, and artificial intelligence (AI). Here we report an integrated pressure sensor array, by combining solution-processed two-dimensional (2D) MoS2 van der Waals (vdW) thin film transistor (TFT) active matrix and conductive micropyramidal pressure-sensitive rubber (PSR) electrodes made of polydimethylsiloxane/ carbon nanotube composites, to achieve spatially revolved pressure mapping with excellent contrast and low power consumption. We demonstrate a 10 × 10 active matrix by using the 2D MoS2 vdW-TFTs with high on-off ratio > 106, minimal hysteresis, and excellent device-to-device uniformity. The combination of the vdW-TFT active matrix with the highly uniform micropyramidal PSR electrodes creates an integrated pressure sensing array for spatially resolved pressure mapping. This study demonstrates that the solution-processed 2D vdW-TFTs offer a solution for active-matrix control of pressure sensor arrays, and could be extended for other active-matrix arrays of electronic or optoelectronic devices.

Keywords: two-dimensional material, pressure sensor array, van der Waals thin film transistor, active matrix, micropyramids

References(59)

1

Dahiya, R. S.; Metta, G.; Valle, M.; Sandini, G. Tactile sensing— From humans to humanoids. IEEE Trans. Robot. 2010, 26, 1-20.

2

Bartolozzi, C.; Natale, L.; Nori, F.; Metta, G. Robots with a sense of touch. Nat. Mater. 2016, 15, 921-925.

3

Chortos, A.; Liu, J.; Bao, Z. N. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937-950.

4

Someya, T.; Sekitani, T.; Iba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field- effect transistors for artificial skin applications. Proc. Natl. Acad. Sci. USA 2004, 101, 9966-9970.

5

Wang, C.; Hwang, D.; Yu, Z. B.; Takei, K.; Park, J.; Chen, T.; Ma, B. W.; Javey, A. User-interactive electronic skin for instantaneous pressure visualization. Nat. Mater. 2013, 12, 899-904.

6

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859-864.

7

Huang, Y. C.; Liu, Y.; Ma, C.; Cheng, H. C.; He, Q. Y.; Wu, H.; Wang, C.; Lin, C. Y.; Huang, Y.; Duan, X. F. Sensitive pressure sensors based on conductive microstructured air-gap gates and two-dimensional semiconductor transistors. Nat. Electron. 2020, 3, 59-69.

8

Li, H. B.; Lv, S. Y.; Fang, Y. Bio-inspired micro/nanostructures for flexible and stretchable electronics. Nano Res. 2020, 13, 1244- 1252.

9

Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y., A laser ablated graphene-based flexible self-powered pressure sensor for human gestures and finger pulse monitoring. Nano Res. 2019, 12, 1789-1795.

10
Kang, K.; Park, J.; Kim, K.; Yu, K. J. Recent developments of emerging inorganic, metal and carbon-based nanomaterials for pressure sensors and their healthcare monitoring applications. Nano Res., in press, https://doi.org/10.1007/s12274-021-3490-0.
DOI
11

Li, S.; Zhang, Y.; Wang, Y. L.; Xia, K. L.; Yin, Z.; Wang, H. M.; Zhang, M. C.; Liang, X. P.; Lu, H. J.; Zhu, M. J. et al. Physical sensors for skin-inspired electronics. InfoMat 2020, 2, 184-211.

12

Wang, C. Y.; Xia, K. L.; Wang, H. M.; Liang, X. P.; Yin, Z.; Zhang, Y. Y. Advanced carbon for flexible and wearable electronics. Adv. Mater. 2019, 31, 1801072.

13

Lo, L. W.; Shi, H. Y.; Wan, H. C.; Xu, Z. H.; Tan, X. B.; Wang, C. Inkjet-printed soft resistive pressure sensor patch for wearable electronics applications. Adv. Mater. Technol. 2020, 5, 1900717.

14

Zang, Y. P.; Huang, D. Z.; Di, C. A.; Zhu, D. B. Device engineered organic transistors for flexible sensing applications. Adv. Mater. 2016, 28, 4549-4555.

15

Wang, C. H.; Li, X. S.; Hu, H. J.; Zhang, L.; Huang, Z. L.; Lin, M. Y.; Zhang, Z. R.; Yin, Z. N.; Huang, B.; Gong, H. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2018, 2, 687-695.

16

Someya, T.; Kato, Y.; Sekitani, T.; Iba, S.; Noguchi, Y.; Murase, Y.; Kawaguchi, H.; Sakurai, T. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc. Natl. Acad. Sci. USA 2005, 102, 12321-12325.

17

Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A rubberlike stretchable active matrix using elastic conductors. Science 2008, 321, 1468-1472.

18

Lee, J. W.; Xu, R. X.; Lee, S.; Jang, K. I.; Yang, Y. C.; Banks, A.; Yu, K. J.; Kim, J.; Xu, S.; Ma, S. Y. et al. Soft, thin skin-mounted power management systems and their use in wireless thermography. Proc. Natl. Acad. Sci. USA 2016, 113, 6131-6136.

19

Hu, H. J.; Zhu, X.; Wang, C. H.; Zhang, L.; Li, X. S.; Lee, S.; Huang, Z. L.; Chen, R. M.; Chen, Z. Y.; Wang, C. F. et al. Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces. Sci. Adv. 2018, 4, eaar3979.

20

Zang, Y. P.; Zhang, F. J.; Huang, D. Z.; Gao, X. K.; Di, C. A.; Zhu, D. B. Flexible suspended gate organic thin-film transistors for ultra- sensitive pressure detection. Nat. Commun. 2015, 6, 6269.

21

Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Brédas, J. L.; Ewbank, P. C.; Mann, K. R. Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 2004, 16, 4436-4451.

22

Pannemann, C.; Diekmann, T.; Hilleringmann, U. Degradation of organic field-effect transistors made of pentacene. J. Mater. Res. 2004, 19, 1999-2002.

23

Manunza, I.; Bonfiglio, A. Pressure sensing using a completely flexible organic transistor. Biosens. Bioelectron. 2007, 22, 2775-2779.

24

Sirringhaus, H. Reliability of organic field-effect transistors. Adv. Mater. 2009, 21, 3859-3873.

25

Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495-500.

26

Yeom, C.; Chen, K.; Kiriya, D.; Yu, Z. B.; Cho, G.; Javey, A. Large- area compliant tactile sensors using printed carbon nanotube active- matrix backplanes. Adv. Mater. 2015, 27, 1561-1566.

27

Nela, L.; Tang, J. S.; Cao, Q.; Tulevski, G.; Han, S. J. Large-area high- performance flexible pressure sensor with carbon nanotube active matrix for electronic skin. Nano Lett. 2018, 18, 2054-2059.

28

Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active-matrix circuitry for low- voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821-826.

29

Duan, X. F. Assembled semiconductor nanowire thin films for high- performance flexible macroelectronics. MRS Bull. 2007, 32, 134-141.

30

Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semicon-ductor nanowires and nanoribbons. Nature 2003, 425, 274-278.

31

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768-779.

32

Kang, J.; Sangwan, V. K.; Lee, H. S.; Liu, X. L.; Hersam, M. C. Solution-processed layered gallium telluride thin-film photodetectors. ACS Photonics 2018, 5, 3996-4002.

33

Seo, J. W. T.; Zhu, J.; Sangwan, V. K.; Secor, E. B.; Wallace, S. G.; Hersam, M. C. Fully inkjet-printed, mechanically flexible MoS2 nanosheet photodetectors. ACS Appl. Mater. Interfaces 2019, 11, 5675-5681.

34

Lin, Z. Y.; Liu, Y.; Halim, U.; Ding, M. N.; Liu, Y. Y.; Wang, Y. L.; Jia, C. C.; Chen, P.; Duan, X. D.; Wang, C. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 2018, 562, 254-258.

35

Lin, Z. Y.; Huang, Y.; Duan, X. F. Van der Waals thin-film electronics. Nat. Electron. 2019, 2, 378-388.

36

Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052.

37

Akinwande, D.; Huyghebaert, C.; Wang, C. H.; Serna, M. I.; Goossens, S.; Li, L. J.; Wong, H. S. P.; Koppens, F. H. L. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573, 507-518.

38

Liang, Q. J.; Zhang, Q.; Gou, J.; Song, T. T.; Arramel; Chen, H.; Yang, M.; Lim, S. X.; Wang, Q. X.; Zhu, R. et al. Performance improvement by ozone treatment of 2D PdSe2. ACS Nano 2020, 14, 5668-5677.

39

Lv, R. T.; Robinson, J. A.; Schaak, R. E.; Sun, D.; Sun, Y. F.; Mallouk, T. E.; Terrones, M. Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 2015, 48, 56-64.

40

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

41

Stinner, F. S.; Lai, Y. M.; Straus, D. B.; Diroll, B. T.; Kim, D. K.; Murray, C. B.; Kagan, C. R. Flexible, high-speed CdSe nanocrystal integrated circuits. Nano Lett. 2015, 15, 7155-7160.

42

Tu, L. Q.; Cao, R. R.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wang, F.; Wang, Z.; Shen, H.; Lin, T.; Zhou, P. et al. Ultrasensitive negative capacitance phototransistors. Nat. Commun. 2020, 11, 101.

43

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70-74.

44

Xu, H.; Zhang, H. M.; Guo, Z. X.; Shan, Y. W.; Wu, S. W.; Wang, J. L.; Hu, W. D.; Liu, H. Q.; Sun, Z. Z.; Luo, C. et al. High-performance wafer-scale MoS2 transistors toward practical application. Small 2018, 14, 1803465.

45

Yang, H.; Kim, S. W.; Chhowalla, M.; Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 2017, 13, 931-937.

46

Carrascoso, F.; Li, H.; Frisenda, R.; Castellanos-Gomez, A. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 2021, 14, 1698-1703.

47

Li, Z. W.; Lv, Y. W.; Ren, L. W.; Li, J.; Kong, L. G.; Zeng, Y. J.; Tao, Q. Y.; Wu, R. X.; Ma, H. F.; Zhao, B. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun. 2020, 11, 1151.

48

Liu, H.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res. 2020, 13, 1644-1650.

49

Zhao, B.; Dang, W. Q.; Yang, X. D.; Li, J.; Bao, H. H.; Wang, K.; Luo, J.; Zhang, Z. W.; Li, B.; Xie, H. P. et al. Van der Waals epitaxial growth of ultrathin metallic NiSe nanosheets on WSe2 as high performance contacts for WSe2 transistors. Nano Res. 2019, 12, 1683-1689.

50

Yang, Z. Y.; Liu, X. Q.; Zou, X. M.; Wang, J. L.; Ma, C.; Jiang, C. Z.; Ho, J. C.; Pan, C. F.; Xiao, X. H.; Xiong, J. et al. Performance limits of the self-aligned nanowire top-gated MoS2 transistors. Adv. Funct. Mater. 2017, 27, 1602250.

51

Lin, Z. Y.; Chen, Y.; Yin, A. X.; He, Q. Y.; Huang, X. Q.; Xu, Y. X.; Liu, Y.; Zhong, X.; Huang, Y.; Duan, X. F. Solution processable colloidal nanoplates as building blocks for high-performance electronic thin films on flexible substrates. Nano Lett. 2014, 14, 6547-6553.

52

Zhu, B. W.; Niu, Z. Q.; Wang, H.; Leow, W. R.; Wang, H.; Li, Y. G.; Zheng, L. Y.; Wei, J.; Huo, F. W.; Chen, X. D. Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 2014, 10, 3625-3631.

53

Park, J.; Lee, Y.; Hong, J.; Ha, M.; Jung, Y. D.; Lim, H.; Kim, S. Y.; Ko, H. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014, 8, 4689-4697.

54

Ma, C.; Xu, D.; Huang, Y. C.; Wang, P. Q.; Huang, J.; Zhou, J. Y.; Liu, W. F.; Li, S. T.; Huang, Y.; Duan, X. F. Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks. ACS Nano 2020, 14, 12866-12876.

55

Tee, B. C. K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H. L. et al. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313-316.

56

Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

57

Mishra, R. B.; El-Atab, N.; Hussain, A. M.; Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Adv. Mater. Technol. 2021, 6, 2001023.

58

Xia, K. L.; Wang, C. Y.; Jian, M. Q.; Wang, Q.; Zhang, Y. Y. CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Res. 2018, 11, 1124-1134.

59

Liu, Y.; Zhou, H. L.; Cheng, R.; Yu, W.; Huang, Y.; Duan, X. F. Highly flexible electronics from scalable vertical thin film transistors. Nano Lett. 2014, 14, 1413-1418.

File
12274_2021_3717_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 May 2021
Revised: 23 June 2021
Accepted: 24 June 2021
Published: 04 September 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

Y. H. acknowledges the financial support from the Office of Naval Research through award N00014-18-1-2491. X. F. D. acknowledged the support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering through award DE-SC0018828 (material preparation).

Return