Journal Home > Volume 14 , Issue 10

Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Block-layer model for intergrowth structures

Show Author's information Zhicheng Wang1,Siqi Wu1Liangwen Ji1Guanghan Cao1,2( )
Department of Physics,Zhejiang Province Key Laboratory of Quantum Technology and Devices, Interdisciplinary Center for Quantum Information, and State Key Lab of Silicon Materials, Zhejiang University,Hangzhou,310027,China;
Collaborative Innovation Centre of Advanced Microstructures,Nanjing University, Nanjing,,210093,China;

Present address: Department of Physics, Boston College, Chestnut Hill, MA 02467, USA

Abstract

Lattice match and charge transfer between distinct block layers (BLs) play an important role in the formation of an intergrowth structure. Herein we propose a simple BL model addressing the different roles of the lattice match and the charge transfer. Inter-BL charge transfer lowers the internal energy, while lattice match minimizes the elastic energy, both of which together make the intergrowth structure stabilized. The model is able to reproduce the lattice parameters precisely for complex iron-based superconductors with intergrowth structures. The elastic energy and the charge-transfer energy are evaluated with assistance of the first-principles calculations. This work rationalizes the basic principles of BL design for intergrowth structures, which can be utilized not only for finding new superconducting materials but also for investigating other layered materials with various functionalities.

Keywords: structural design, iron-based superconductors, intergrowth structures, lattice match, interlayer charge transfer

References(33)

1

Bednorz, J. G.; Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B: Condens. Matter 1986, 64, 189-193.

2

Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett. 1987, 58, 908-910.

3

Kamihara, Y.; Watanabe, T.; Hirano, M.; Hosono, H. Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K. J. Am. Chem. Soc. 2008, 130, 3296-3297.

4

Chen, X. H.; Wu, T.; Wu, G.; Liu, R. H.; Chen, H.; Fang, D. F. Superconductivity at 43 K in SmFeAsO1-xFx. Nature 2008, 453, 761-762.

5

Jiang, H.; Sun, Y. L.; Xu, Z. A.; Cao, G. H. Crystal chemistry and structural design of iron-based superconductors. Chin. Phys. B 2013, 22, 087410.

6

Wang, Z. C.; Cao, G. H. Self-doped iron-based superconductors with intergrowth structures. Acta Phys. Sin. 2018, 67, 207406.

7

Tokura, Y.; Arima, T. New classification method for layered copper oxide compounds and its application to design of new high Tc superconductors. Jpn. J. Appl. Phys. 1990, 29, 2388.

8

Li, R. K.; Zhu, Y. J.; Qian, Y. T.; Chen Z. Y. The preparation and structure of a new layered cuprate: TaSr2(NdCe)2Cu2Oy, the Ta analog of the Tl-1222 phase. Physica C: Supercord. 1991, 176, 19-23.

9

Li, R. K. Crystal chemistry and block architecture of high-Tc cuprate superconductors. Appl. Phys. Commun. 1992, 11, 295-316.

10

Qian, Y. T.; Tang, K. B.; Yang, P. D.; Chen, Z. Y.; Li, R. K.; Zhou, G. E.; Zhang, Y. H.; Wang, N. L. The synthesis and superconductivity of a new type of Bi-1212 phase (Bi, Cd)Sr2(Y, Ca)Cu2Oz. Physica C: Supercord. 1993, 209, 516-518.

11

Park, C.; Snyder, R. L. Structures of high-temperature cuprate superconductors. J. Am. Ceram. Soc. 1995, 78, 3171-3194.

12

Wiegers, G. A. Misfit layer compounds: Structures and physical properties. Prog. Solid State Chem. 1996, 24, 1-139.

13

Meerschaut, A. Misfit layer compounds. Curr. Opin. Solid State Mater. Sci. 1996, 1, 250-259.

14

Sun, Y. L.; Jiang, H.; Zhai, H. F.; Bao, J. K.; Jiao, W. H.; Tao, Q.; Shen, C. Y.; Zeng, Y. W.; Xu, Z. A.; Cao, G. H. Ba2Ti2Fe2As4O: A new superconductor containing Fe2As2 layers and Ti2O sheets. J. Am. Chem. Soc. 2012, 134, 12893-12896.

15

Zhai, H. F.; Zhang, P.; Wu, S. Q.; He, C. Y.; Tang, Z. T.; Jiang, H.; Sun, Y. L.; Bao, J. K.; Nowik, I.; Felner, I. et al. Anomalous Eu valence state and superconductivity in undoped Eu3Bi2S4F4. J. Am. Chem. Soc. 2014, 136, 15386-15393.

16

Liu, Y.; Liu, Y. B.; Chen, Q.; Tang, Z. T.; Jiao, W. H.; Tao, Q.; Xu, Z. A.; Cao, G. H. A new ferromagnetic superconductor: CsEuFe4As4. Sci. Bull. 2016, 61, 1213-1220.

17

Liu, Y.; Liu, Y. B.; Tang, Z. T.; Jiang, H.; Wang, Z. C.; Ablimit, A.; Jiao, W. H.; Tao, Q.; Feng, C. M.; Xu, Z. A. et al. Superconductivity and ferromagnetism in hole-doped RbEuFe4As4. Phys. Rev. B 2016, 93, 214503.

18

Wang, Z. C.; He, C. Y.; Wu, S. Q.; Tang, Z. T.; Liu, Y.; Ablimit, A.; Feng, C. M.; Cao, G. H. Superconductivity in KCa2Fe4As4F2 with separate double Fe2As2 layers. J. Am. Chem. Soc. 2016, 138, 7856-7859.

19

Shao, Y. T.; Wang, Z. C.; Li, B. Z.; Wu, S. Q.; Wu, J. F.; Ren, Z.; Qiu, S. W.; Rao, C.; Wang, C.; Cao, G. H. BaTh2Fe4As4(N0.7O0.3)2: An iron-based superconductor stabilized by inter-block-layer charge transfer. Sci. China Mater. 2019, 62, 1357-1362.

20

Wang, Z. C.; He, C. Y.; Wu, S. Q.; Tang, Z. T.; Liu. Y.; Cao, G. H. Synthesis, crystal structure and superconductivity in RbLn2Fe4As4O2 (Ln = Sm, Tb, Dy, and Ho). Chem. Mater. 2017, 29, 1805-1812.

21

Wu, S. Q.; Wang, Z. C.; He, C. Y.; Tang, Z. T.; Liu, Y.; Cao, G. H. Superconductivity at 33-37 K in ALn2Fe4As4O2 (A = K and Cs; Ln = lanthanides). Phys. Rev. Mater. 2017, 1, 044804.

22

Rotter, M.; Tegel, M.; Johrendt, D. Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2. Phys. Rev. Lett. 2008, 101, 107006.

23

Goldschmidt, V. M. Die gesetze der krystallochemie. Naturwissenschaften 1926, 14, 477-485.

24

Katrych, S.; Rogacki, K.; Pisoni, A.; Bosma, S.; Weyeneth, S.; Gaal, R.; Zhigadlo, N. D.; Karpinski, J.; Forró, L. Pr4Fe2As2Te1-xO4: A layered FeAs-based superconductor. Phys. Rev. B 2013, 87, 180508(R).

25

Lu, X. F.; Wang, N. Z.; Wu, H.; Wu, Y. P.; Zhao, D.; Zeng, X. Z.; Luo, X. G.; Wu, T.; Bao, W.; Zhang, G. H. et al. Coexistence of superconductivity and antiferromagnetism in (Li0.8Fe0.2)OHFeSe. Nat. Mater. 2015, 14, 325-329.

26

Gibson, Q. D.; Dyer, M. S.; Whitehead, G. F. S.; Alaria, J.; Pitcher, M. J.; Edwards, H. J.; Claridge, J. B.; Zanella, M.; Dawson, K.; Manning, T. D. et al. Bi4O4Cu1.7Se2.7Cl0.3: Intergrowth of BiOCuSe and Bi2O2Se stabilized by the addition of a third anion. J. Am. Chem. Soc. 2017, 139, 15568-15571.

27

Eul, M.; Johrendt, D.; Pöttgen, R. An extension of pnictide oxide chemistry—Salt flux synthesis and structure of La5Cu4As4O4Cl2. Z. Naturforsch. B 2009, 64, 1353-1359.

28

Bartsch, T.; Benndorf, C.; Eckert, H.; Eul, M.; Pöttgen, R. La3Cu4P4O2 and La5Cu4P4O4Cl2: Synthesis, structure and 31P solid state NMR spectroscopy. Z. Naturforsch. B 2016, 71, 149-155.

29

Wiegers, G. A. Charge transfer between layers in misfit layer compounds. J. Alloys Compd. 1995, 219, 152-156.

30

Yao, Q.; Shen, D. W.; Wen, C. H. P.; Hua, C. Q.; Zhang, L. Q.; Wang, N. Z.; Niu, X. H.; Chen, Q. Y.; Dudin, P.; Lu, Y. H. et al. Charge transfer effects in naturally occurring van der Waals heterostructures (PbSe)1.16(TiSe2)m (m = 1, 2). Phys. Rev. Lett. 2018, 120, 106401.

31

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

32

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953-17979.

33

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865-3868.

File
12274_2021_3716_MOESM1_ESM.pdf (915.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2021
Revised: 17 June 2021
Accepted: 24 June 2021
Published: 09 July 2021
Issue date: October 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2017YFA0303002), the National Natural Science Foundation of China (No. 12050003), and the Fundamental Research Funds for the Central Universities of China.

Return