Journal Home > Volume 15 , Issue 2

Hypoxia, an important characteristic of bacterial biofilms, can hinder the generation of reactive oxygen species (ROS) in photodynamic therapy (PDT), leading to reduced therapeutic efficacy of PDT. In order to address this issue, fluorinated liposome was fabricated as an oxygen-sufficient nanoplatform for enhanced photodynamic eradication of bacterial biofilms. The liposomes (denoted as Lip-Ce6-PFH@O2) were prepared by co-encapsulation of O2 carrier perfluorohexane (PFH) and photosensitizer chlorin e6 (Ce6). Lip-Ce6-PFH@O2 could achieve efficient biofilm penetration due to the positively charged surface. The hypoxic microenvironment of biofilms would then be relieved, leading to the generation of more ROS under laser irradiation. Therefore, the bactericidal capability of PDT could be significantly improved because of the co-delivered O2 carrier PFH. Lip-Ce6-PFH@O2 exhibited much better antibiofilm ability than that of Lip-Ce6 both in vitro and in vivo. Meanwhile, Lip-Ce6-PFH@O2 also effectively alleviated inflammation symptoms and accelerated wound healing in the mice model. In general, this study provides a new paradigm to enhance the therapeutic efficacy of PDT for efficient biofilm eradication.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

The relief of hypoxic microenvironment using an O2 self-sufficient fluorinated nanoplatform for enhanced photodynamic eradication of bacterial biofilms

Show Author's information Lingyun ZouDengfeng HuFanjin WangQiao JinJian Ji( )
MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang UniversityHangzhou 310027 China

Abstract

Hypoxia, an important characteristic of bacterial biofilms, can hinder the generation of reactive oxygen species (ROS) in photodynamic therapy (PDT), leading to reduced therapeutic efficacy of PDT. In order to address this issue, fluorinated liposome was fabricated as an oxygen-sufficient nanoplatform for enhanced photodynamic eradication of bacterial biofilms. The liposomes (denoted as Lip-Ce6-PFH@O2) were prepared by co-encapsulation of O2 carrier perfluorohexane (PFH) and photosensitizer chlorin e6 (Ce6). Lip-Ce6-PFH@O2 could achieve efficient biofilm penetration due to the positively charged surface. The hypoxic microenvironment of biofilms would then be relieved, leading to the generation of more ROS under laser irradiation. Therefore, the bactericidal capability of PDT could be significantly improved because of the co-delivered O2 carrier PFH. Lip-Ce6-PFH@O2 exhibited much better antibiofilm ability than that of Lip-Ce6 both in vitro and in vivo. Meanwhile, Lip-Ce6-PFH@O2 also effectively alleviated inflammation symptoms and accelerated wound healing in the mice model. In general, this study provides a new paradigm to enhance the therapeutic efficacy of PDT for efficient biofilm eradication.

Keywords: hypoxia, photodynamic therapy, biofilm, liposome, perfluorohexane

References(42)

1

Qi, G. B.; Zhang, D.; Liu, F. H.; Qiao, Z. Y.; Wang, H. An "on-site transformation" strategy for treatment of bacterial infection. Adv. Mater. 2017, 29, 1703461.

2

Ermini, M. L.; Voliani, V. Antimicrobial nano-agents: The copper age. ACS Nano 2021, 15, 6008–6029.

3
Zhao, Y.; Chen, L.; Wang, Y. N.; Song, X. Y.; Li, K. Y.; Yan, X. F.; Yu, L. M.; He, Z. Y. Nanomaterial-based strategies in antimicrobial applications: Progress and perspectives. Nano Res., in press, DOI: 10.1007/s12274-021-3417-4.https://doi.org/10.1007/s12274-021-3417-4
DOI
4

Trøstrup, H.; Laulund, A. S. B.; Moser, C. Insights into host–pathogen interactions in biofilm-infected wounds reveal possibilities for new treatment strategies. Antibiotics 2020, 9, 396.

5

Benoit, D. S. W.; Sims, K. R. Jr., Fraser, D. Nanoparticles for oral biofilm treatments. ACS Nano 2019, 13, 4869–4875.

6
Hoyle, B. D.; Costerton, J. W. Bacterial resistance to antibiotics: The role of biofilms. In Progress in Drug Research/Fortschritte der Arzneimittelforschung/Progrès des Recherches Pharmaceutiques. Salmon, J. A.; Garland, L. G.; Hoyle, B. D.; Costerton, J. W.; Seiler, N.; Raeburn, D.; Karlsson, J. A.; Polak, A.; Hartman, P. G.; Rohmer, M. et al., Eds.; Birkhäuser: Basel, 1991; pp 91–105.https://doi.org/10.1007/978-3-0348-7139-6_2
DOI
7

Wei, T.; Yu, Q.; Zhan, W. J.; Chen, H. A smart antibacterial surface for the on-demand killing and releasing of bacteria. Adv. Healthcare Mater. 2016, 5, 449–456.

8

Su, L. Z.; Li, Y. F.; Liu, Y.; Ma, R. J.; Liu, Y.; Huang, F.; An, Y. L.; Ren, Y. J.; van der Mei, H. C.; Busscher, H. J. et al. Antifungal-inbuilt metal–organic-frameworks eradicate Candida albicans biofilms. Adv. Funct. Mater. 2020, 30, 2000537.

9

Xu, M.; Khan, A.; Wang, T. J.; Song, Q.; Han, C. M.; Wang, Q. Q.; Gao, L. L.; Huang, X.; Li, P.; Huang, W. Mussel-inspired hydrogel with potent in vivo contact-active antimicrobial and wound healing promoting activities. ACS Appl. Bio Mater. 2019, 2, 3329–3340.

10

Wang, S. T.; Gao, Y. F.; Jin, Q.; Ji, J. Emerging antibacterial nanomedicine for enhanced antibiotic therapy. Biomater. Sci. 2020, 8, 6825–6839.

11

Chen, H.; Jin, Y. Y.; Wang, J. J.; Wang, Y. Q.; Jiang, W. Y.; Dai, H. D.; Pang, S. Y.; Lei, L.; Ji, J.; Wang, B. L. Design of smart targeted and responsive drug delivery systems with enhanced antibacterial properties. Nanoscale 2018, 10, 20946–20962.

12

Hu, D. F.; Zou, L. Y.; Gao, Y. F.; Jin, Q.; Ji, J. Emerging nanobiomaterials against bacterial infections in postantibiotic era. View 2020, 1, 20200014.

13

Li, S. H.; Leung, P. H. M.; Xu, X. Y.; Wu, C. H. Homogentisic acid γ-lactone suppresses the virulence factors of Pseudomonas aeruginosa by quenching its quorum sensing signal molecules. Chin. Chem. Lett. 2018, 29, 313–316.

14

Huang, Y.; Gao, Q.; Li, X.; Gao, Y. F.; Han, H. J.; Jin, Q.; Yao, K.; Ji, J. Ofloxacin loaded MoS2 nanoflakes for synergistic mild- temperature photothermal/antibiotic therapy with reduced drug resistance of bacteria. Nano Res. 2020, 13, 2340–2350.

15

Xiao, F. F.; Cao, B.; Wen, L. W.; Su, Y. H.; Zhan, M. X.; Lu, L. G.; Hu, X. L. Photosensitizer conjugate-functionalized poly(hexamethylene guanidine) for potentiated broad-spectrum bacterial inhibition and enhanced biocompatibility. Chin. Chem. Lett. 2020, 31, 2516–2519.

16

Hu, D. F.; Zou, L. Y.; Li, B. C.; Hu, M.; Ye, W. Y.; Ji, J. Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria- targeted polydopamine nanoparticles with nano-localized hyperpyrexia. ACS Biomater. Sci. Eng. 2019, 5, 5169–5179.

17

Naha, P. C.; Liu, Y.; Hwang, G.; Huang, Y.; Gubara, S.; Jonnakuti, V.; Simon-Soro, A.; Kim, D.; Gao, L. Z.; Koo, H. et al. Dextran-coated iron oxide nanoparticles as biomimetic catalysts for localized and pH-activated biofilm disruption. ACS Nano 2019, 13, 4960–4971

18

Hou, Z.; Wu, Y.; Xu, C.; Reghu, S.; Shang, Z. F.; Chen, J. J.; Pranantyo, D.; Marimuth, K.; De, P. P.; Ng, O. T. et al. Precisely structured nitric-oxide-releasing copolymer brush defeats broad- spectrum catheter-associated biofilm infections in vivo. ACS Cent. Sci. 2020, 6, 2031–2045.

19

Xu, J. Q.; Zhao, H. J.; Xie, Z. X.; Ruppel, S.; Zhou, X. Q.; Chen, S.; Liang, J. F.; Wang, X. Stereochemical strategy advances microbially antiadhesive cotton textile in safeguarding skin flora. Adv. Healthcare Mater. 2019, 8, 1900232.

20

Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.

21

Yuan, Z.; Lin, C. C.; He, Y.; Tao, B. L.; Chen, M. W.; Zhang, J. X.; Liu, P, Cai, K. Y. Near-infrared light-triggered nitric-oxide-enhanced photodynamic therapy and low-temperature photothermal therapy for biofilm elimination. ACS Nano 2020, 14, 3546–3562.

22

Xie, X. Z.; Mao, C. Y.; Liu, X. M.; Zhang, Y. Z.; Cui, Z. D.; Yang, X. J.; Yeung, K. W. K.; Pan, H. B.; Chu, P. K.; Wu, S. L. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating. ACS Appl. Mater. Interfaces 2017, 9, 26417–26428.

23

Winterbourn, C. C. Reconciling the chemistry and biology of reactive oxygen species. Nat. Chem. Biol. 2008, 4, 278–286.

24

Liu, C. H.; Cao, J. J.; Zhao, Y.; Zheng, C. X.; Zheng, Y. D.; Liu, Q.; Zhang, Z. Z.; Liu, Y. Low-adhesive, positively charged nanocapsule for the treatment of drug-resistant bacterial biofilm infection. Acta Polym. Sin. 2019, 50, 300–310.

25

Cao, J. J.; Zhao, Y.; Liu, Y.; Tian, S.; Zheng, C. X.; Liu, C. H.; Zhai, Y.; An, Y. L.; Busscher, H. J.; Shi, L. Q. et al. Phosphorylcholine-based polymer encapsulated chitosan nanoparticles enhance the penetration of antimicrobials in a staphylococcal biofilm. ACS Macro Lett. 2019, 8, 651–657.

26

Xiu, W.; Gan, S. Y.; Wen, Q. R.; Qiu, Q.; Dai, S. L.; Dong, H.; Li, Q.; Yuwen, L. H.; Weng, L. X.; Teng, Z. G. et al. Biofilm microenvironment-responsive nanotheranostics for dual-mode imaging and hypoxia-relief-enhanced photodynamic therapy of bacterial infections. Research 2020, 2020, 9426453.

27

Deng, Q. Q.; Sun, P. P.; Zhang, L.; Liu, Z. W.; Wang, H.; Ren, J. S.; Qu, X. G. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms. Adv. Funct. Mater. 2019, 29, 1903018.

28

Chai, M. Y.; Gao, Y. F.; Liu, J.; Deng, Y. Y.; Hu, D. F.; Jin, Q.; Ji, J. Polymyxin B-polysaccharide polyion nanocomplex with improved biocompatibility and unaffected antibacterial activity for acute lung infection management. Adv. Healthcare Mater. 2020, 9, 1901542.

29

Gao, Y. F.; Wang, J.; Chai, M. Y.; Li, X.; Deng, Y. Y.; Jin, Q.; Ji, J. Size and charge adaptive clustered nanoparticles targeting the biofilm microenvironment for chronic lung infection management. ACS Nano 2020, 14, 5686–5699.

30

Liu, Y.; Busscher, H. J.; Zhao, B. R.; Li, Y. F.; Zhang, Z. K.; van der Mei, H. C.; Ren, Y. J.; Shi, L. Q. Surface-adaptive, antimicrobially loaded, micellar nanocarriers with enhanced penetration and killing efficiency in staphylococcal biofilms. ACS Nano 2016, 10, 4779– 4789.

31

Hu, D. F.; Deng, Y. Y.; Jia, F.; Jin, Q.; Ji, J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms. ACS Nano 2020, 14, 347–359.

32

Schaible, B.; Taylor, C. T.; Schaffer, K. Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob. Agents Chemother. 2012, 56, 2114–2118.

33

Hu, D. F.; Zou, L. Y.; Yu, W. J.; Jia, F.; Han, H. J.; Yao, K.; Jin, Q.; Ji, J. Relief of biofilm hypoxia using an oxygen nanocarrier: A new paradigm for enhanced antibiotic therapy. Adv. Sci. 2020, 7, 2000398.

34

He, Z. M.; Huang, X. L.; Wang, C.; Li, X. L.; Liu, Y. J.; Zhou, Z. J.; Wang, S.; Zhang, F. W.; Wang, Z. T.; Jacobson, O. et al. A catalase-like metal-organic framework nanohybrid for O2-evolving synergistic chemoradiotherapy. Angew. Chem. 2019, 131, 8844–8848.

35

Zheng, D. W.; Li, B.; Li, C. X.; Fan, J. X.; Lei, Q.; Li, C.; Xu, Z. S.; Zhang, X. Z. Carbon-dot-decorated carbon nitride nanoparticles for enhanced photodynamic therapy against hypoxic tumor via water splitting. ACS Nano 2016, 10, 8715–8722.

36

Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2- responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

37

Peng, S.; Song, R. Y.; Lin, Q. G.; Zhang, Y. L.; Yang, Y. Z.; Luo, M.; Zhong, Z. H.; Xu, X. N.; Lu, L. G.; Yao, S. H. et al. A robust oxygen microbubble radiosensitizer for iodine-125 brachytherapy. Adv. Sci. 2021, 8, 2002567.

38

Tang, X. L.; Cheng, Y. H.; Huang, S. T.; Zhi, F.; Yuan, A. H.; Hu, Y. Q.; Wu, J. H. Overcome the limitation of hypoxia against photodynamic therapy to treat cancer cells by using perfluorocarbon nanodroplet for photosensitizer delivery. Biochem. Biophys. Res. Commun. 2017, 487, 483–487.

39

Zhu, B. H.; Wang, L. Y.; Huang, J. B.; Xiang, X.; Tang, Y. J.; Cheng, C.; Yan, F.; Ma, L.; Qiu, L. Ultrasound-triggered perfluorocarbon- derived nanobombs for targeted therapies of rheumatoid arthritis. J. Mater. Chem. B. 2019, 7, 4581–4591.

40

Yu, M.; Xu, X. L.; Cai, Y. J.; Zou, L. Y.; Shuai, X. T. Perfluorohexane- cored nanodroplets for stimulations-responsive ultrasonography and O2-potentiated photodynamic therapy. Biomaterials 2018, 175, 61–71.

41

Song, G. S.; Liang, C.; Gong, H.; Li, M. F.; Zheng, X. C.; Cheng, L.; Yang, K.; Jiang, X. Q.; Liu, Z. Core–shell MnSe@Bi2Se3 fabricated via a cation exchange method as novel nanotheranostics for multimodal imaging and synergistic thermoradiotherapy. Adv. Mater. 2015, 27, 6110–6117.

42

Riess, J. G. Oxygen carriers ("blood substitutes")-raison d'Etre, chemistry, and some physiology blut ist ein ganz besondrer saft. Chem. Rev. 2001, 101, 2797–2920.

File
12274_2021_3712_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2021
Revised: 15 June 2021
Accepted: 25 June 2021
Published: 12 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by National Key Research and Development Project (No. 2020YFE0204400), National Natural Science Foundation of China (No. 52022090), and Zhejiang Provincial Ten Thousand Talents Program (No. 2018R52001).

Return