Journal Home > Volume 15 , Issue 2

Cell adhesion to extracellular matrices (ECM) is critical to physiological and pathological processes as well as biomedical and biotechnological applications. It has been known that a cell can adhere on an adhesive microisland only over a critical size. But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration. Herein, we fabricated a series of micro-nanopatterns with different microisland sizes and arginine–glycine–aspartate (RGD) nanospacings on a nonfouling poly(ethylene glycol) background. Besides reproducing that nanospacing of RGD, a ligand of its receptor integrin (a membrane protein), significantly influences specific cell adhesion on bioactive nanoarrays, we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns, yet the latter exhibited more characteristic behaviors of cell adhesion. We found increased critical adhesion areas of human mesenchymal stem cells (hMSCs) on nanoarrayed microislands with increased RGD nanospacings. However, the numbers of nanodots with respect to the critical adhesion areas were not a constant. A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion. We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD, which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Critical adhesion areas of cells on micro-nanopatterns

Show Author's information Shuang Zheng1Qiong Liu1,2Junhao He1Xinlei Wang1Kai Ye1Xuan Wang1Ce Yan1Peng Liu1,3Jiandong Ding1( )
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science Fudan UniversityShanghai 200438 China
Navy Characteristic Medical Center, the Second Military Medical UniversityShanghai 200433 China
College of Bioengineering Chongqing UniversityChongqing 400044 China

Abstract

Cell adhesion to extracellular matrices (ECM) is critical to physiological and pathological processes as well as biomedical and biotechnological applications. It has been known that a cell can adhere on an adhesive microisland only over a critical size. But no publication has concerned critical adhesion areas of cells on microislands with nanoarray decoration. Herein, we fabricated a series of micro-nanopatterns with different microisland sizes and arginine–glycine–aspartate (RGD) nanospacings on a nonfouling poly(ethylene glycol) background. Besides reproducing that nanospacing of RGD, a ligand of its receptor integrin (a membrane protein), significantly influences specific cell adhesion on bioactive nanoarrays, we confirmed that the concept of critical adhesion area originally suggested in studies of cells on micropatterns was justified also on the micro-nanopatterns, yet the latter exhibited more characteristic behaviors of cell adhesion. We found increased critical adhesion areas of human mesenchymal stem cells (hMSCs) on nanoarrayed microislands with increased RGD nanospacings. However, the numbers of nanodots with respect to the critical adhesion areas were not a constant. A unified interpretation was then put forward after combining nonspecific background adhesion and specific cell adhesion. We further carried out the asymptotic analysis of a series of micro-nanopatterned surfaces to obtain the effective RGD nanospacing on unpatterned free surfaces with densely grafted RGD, which could be estimated nonzero but has never been revealed previously without the assistance of the micro-nanopatterning techniques and the corresponding analysis.

Keywords: poly(ethylene glycol), biomaterial, cell adhesion, surface patterning, arginine–glycine–aspartate (RGD) nanospacing, critical adhesion area

References(86)

1

Ravasio, A.; Le, A. P.; Saw, T. B.; Tarle, V.; Ong, H. T.; Bertocchi, C.; Mège, R. M.; Lim, C. T.; Gov, N. S.; Ladoux, B. Regulation of epithelial cell organization by tuning cell–substrate adhesion. Integr. Biol. 2015, 7, 1228–1241.

2

Davidson, M. D.; Burdick, J. A.; Wells, R. G. Engineered biomaterial platforms to study fibrosis. Adv. Healthc. Mater. 2020, 9, 1901682.

3

Salber, J.; Gräter, S.; Harwardt, M.; Hofmann, M.; Klee, D.; Dujic, J.; Jinghuan, H.; Ding, J. D.; Kippenberger, S.; Bernd, A. et al. Influence of different ECM mimetic peptide sequences embedded in a nonfouling environment on the specific adhesion of human-skin keratinocytes and fibroblasts on deformable substrates. Small 2007, 3, 1023–1031.

4

Chen, Q.; Yu, S.; Zhang, D. H.; Zhang, W. J.; Zhang, H. D.; Zou, J. C.; Mao, Z. W.; Yuan, Y.; Gao, C. Y.; Liu, R. H. Impact of antifouling PEG layer on the performance of functional peptides in regulating cell behaviors. J. Am. Chem. Soc. 2019, 141, 16772–16780.

5

Crosby, C. O.; Zoldan, J. Mimicking the physical cues of the ECM in angiogenic biomaterials. Regen. Biomater. 2019, 6, 61–73.

6

Yalak, G.; Shiu, J. Y.; Schoen, I.; Mitsi, M.; Vogel, V. Phosphorylated fibronectin enhances cell attachment and upregulates mechanical cell functions. PLoS One 2019, 14, e0218893.

7

Chen, Q.; Zhang, D. H.; Zhang, W. J.; Zhang, H. D.; Zou, J. C.; Chen, M. J.; Li, J.; Yuan, Y.; Liu, R. H. Dual mechanism β-amino acid polymers promoting cell adhesion. Nat. Commun. 2021, 12, 562.

8

Xu, B. B.; Feng, C.; Hu, J. H.; Shi, P.; Gu, G. X.; Wang, L.; Huang, X. Y. Spin-casting polymer brush films for stimuli-responsive and anti- fouling surfaces. ACS Appl. Mater. Interfaces 2016, 8, 6685–6692.

9

Silva, J. M.; García, J. R.; Reis, R. L.; García, A. J.; Mano, J. F. Tuning cell adhesive properties via layer-by-layer assembly of chitosan and alginate. Acta Biomater. 2017, 51, 279–293.

10

Li, J.; Di Russo, J.; Hua, X. M.; Chu, Z. Q.; Spatz, J. P.; Wei, Q. Surface immobilized E-cadherin mimetic peptide regulates the adhesion and clustering of epithelial cells. Adv. Healthc. Mater. 2019, 8, 1801384.

11

Gao, J. M.; Ding, X. Q.; Yu, X. Y.; Chen, X. B.; Zhang, X. Y.; Cui, S. Q.; Shi, J. Y.; Chen, J.; Yu, L.; Chen, S. et al. Cell-free bilayered porous scaffolds for osteochondral regeneration fabricated by continuous 3D-printing using nascent physical hydrogel as ink. Adv. Healthc. Mater. 2021, 10, 2001404.

12

Xie, Y. J.; Hu, C.; Feng, Y.; Li, D. F.; Ai, T.; Huang, Y. L.; Chen, X.; Huang, L. J.; Tan, J. L. Osteoimmunomodulatory effects of biomaterial modification strategies on macrophage polarization and bone regeneration. Regen. Biomater. 2020, 7, 233–245.

13

Chopra, A.; Kutys, M. L.; Zhang, K. H.; Polacheck, W. J.; Sheng, C. C.; Luu, R. J.; Eyckmans, J.; Hinson, J. T.; Seidman, J. G.; Seidman, C. E. et al. Force generation via β-cardiac myosin, titin, and α-actinin drives cardiac sarcomere assembly from cell-matrix adhesions. Dev. Cell 2018, 44, 87–96. e5.

14

Doss, B. L.; Pan, M.; Gupta, M.; Grenci, G.; Mège, R. M.; Lim, C. T.; Sheetz, M. P.; Voituriez, R.; Ladoux, B. Cell response to substrate rigidity is regulated by active and passive cytoskeletal stress. Proc. Natl. Acad. Sci. USA 2020, 117, 12817–12825.

15

Kong, F.; Li, Z. H.; Parks, W. M.; Dumbauld, D. W.; García, A. J.; Mould, A. P.; Humphries, M. J.; Zhu, C. Cyclic mechanical reinforcement of integrin–ligand interactions. Mol. Cell 2013, 49, 1060–1068.

16

Oria, R.; Wiegand, T.; Escribano, J.; Elosegui-Artola, A.; Uriarte, J. J.; Moreno-Pulido, C.; Platzman, I.; Delcanale, P.; Albertazzi, L.; Navajas, D. et al. Force loading explains spatial sensing of ligands by cells. Nature 2017, 552, 219–224.

17

Elloumi-Hannachi, I.; García, J. R.; Shekeran, A.; García, A. J. Contributions of the integrin β1 tail to cell adhesive forces. Exp. Cell Res. 2015, 332, 212–222.

18

Zhou, D. W.; Lee, T. T.; Weng, S.; Fu, J. P.; García, A. J. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin-paxillin recruitment at single focal adhesions. Mol. Biol. Cell 2017, 28, 1901–1911.

19

Yu, L. X.; Hou, Y.; Xie, W. Y.; Camacho, J. L. C.; Cheng, C.; Holle, A.; Young, J.; Trappmann, B.; Zhao, W. F.; Melzig, M. F. et al. Ligand diffusion enables force-independent cell adhesion via activating α5β1 integrin and initiating Rac and RhoA signaling. Adv. Mater. 2020, 32, 2002566.

20

Schaufler, V.; Czichos-Medda, H.; Hirschfeld-Warnecken, V.; Neubauer, S.; Rechenmacher, F.; Medda, R.; Kessler, H.; Geiger, B.; Spatz, J. P.; Cavalcanti-Adam, E. A. Selective binding and lateral clustering of α5β1 and αvβ3 integrins: Unraveling the spatial requirements for cell spreading and focal adhesion assembly. Cell Adhes. Migr. 2016, 10, 505–515.

21

Kechagia, J. Z.; Ivaska, J.; Roca-Cusachs, P. Integrins as biome­chanical sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 2019, 20, 457–473.

22

Sales, A.; Ende, K.; Diemer, J.; Kyvik, A. R.; Veciana, J.; Ratera, I.; Kemkemer, R.; Spatz, J. P.; Guasch, J. Cell type-dependent integrin distribution in adhesion and migration responses on protein-coated microgrooved substrates. ACS Omega 2019, 4, 1791–1800.

23

Liu, Q.; Zheng, S.; Ye, K.; He, J. H.; Shen, Y.; Cui, S. Q.; Huang, J. L.; Gu, Y. X.; Ding, J. D. Cell migration regulated by RGD nanospacing and enhanced under moderate cell adhesion on biomaterials. Biomaterials 2020, 263, 120327.

24

Kang, H.; Wong, D. S. H.; Yan, X. H.; Jung, H. J.; Kim, S.; Lin, S.; Wei, K. C.; Li, G.; Dravid, V. P.; Bian, L. M. Remote control of multimodal nanoscale ligand oscillations regulates stem cell adhesion and differentiation. ACS Nano 2017, 11, 9636–9649.

25

Pallarola, D.; Platzman, I.; Bochen, A.; Cavalcanti-Adam, E. A.; Axmann, M.; Kessler, H.; Geiger, B.; Spatz, J. P. Focal adhesion stabilization by enhanced integrin-cRGD binding affinity. BioNanoMaterials 2017, 18, 20160014.

26

Li, J. C.; Chen, Y.; Kawazoe, N.; Chen, G. P. Ligand density- dependent influence of arginine–glycine–aspartate functionalized gold nanoparticles on osteogenic and adipogenic differentiation of mesenchymal stem cells. Nano Res. 2018, 11, 1247–1261.

27

Kafi, M. A.; Aktar, K.; Todo, M.; Dahiya, R. Engineered chitosan for improved 3D tissue growth through Paxillin-FAK-ERK activation. Regen. Biomater. 2020, 7, 141–151.

28

Wong, S. H. D.; Wong, W. K. R.; Lai, C. H. N.; Oh, J.; Li, Z.; Chen, X. Y.; Yuan, W. H.; Bian, L. M. Soft polymeric matrix as a macroscopic cage for magnetically modulating reversible nanoscale ligand presentation. Nano Lett. 2020, 20, 3207–3216.

29

Massia, S. P.; Hubbell, J. A. An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J. Cell Biol. 1991, 114, 1089–1100.

30

Cavalcanti-Adam, E. A.; Volberg, T.; Micoulet, A.; Kessler, H.; Geiger, B.; Spatz, J. P. Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys. J. 2007, 92, 2964–2974.

31

Graeter, S. V.; Huang, J.; Perschmann, N.; López-García, M.; Kessler, H.; Ding, J. D.; Spatz, J. P. Mimicking cellular environments by nanostructured soft interfaces. Nano Lett. 2007, 7, 1413–1418.

32

Cheng, Z. A.; Zouani, O. F.; Glinel, K.; Jonas, A. M.; Durrieu, M. C. Bioactive chemical nanopatterns impact human mesenchymal stem cell fate. Nano Lett. 2013, 13, 3923–3929.

33

Lagunas, A.; Castaño, A. G.; Artés, J. M.; Vida, Y.; Collado, D.; Pérez- Inestrosa, E.; Gorostiza, P.; Claros, S.; Andrades, J. A.; Samitier, J. Large-scale dendrimer-based uneven nanopatterns for the study of local arginine–glycine–aspartic acid (RGD) density effects on cell adhesion. Nano Res 2014, 7, 399–409.

34

Tsimbouri, P.; Gadegaard, N.; Burgess, K.; White, K.; Reynolds, P.; Herzyk, P.; Oreffo, R.; Dalby, M. J. Nanotopographical effects on mesenchymal stem cell morphology and phenotype. J. Cell. Biochem. 2014, 115, 380–390.

35

Li, S. Y.; Wang, X.; Cao, B.; Ye, K.; Li, Z. H.; Ding, J. D. Effects of nanoscale spatial arrangement of arginine–glycine–aspartate peptides on dedifferentiation of chondrocytes. Nano Lett. 2015, 15, 7755–7765.

36

Mashinchian, O.; Turner, L. A.; Dalby, M. J.; Laurent, S.; Shokrgozar, M. A.; Bonakdar, S.; Imani, M.; Mahmoudi, M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine 2015, 10, 829–847.

37

Ye, K.; Cao, L. P.; Li, S. Y.; Yu, L.; Ding, J. D. Interplay of matrix stiffness and cell–cell contact in regulating differentiation of stem cells. ACS Appl. Mater. Interfaces 2016, 8, 21903–21913.

38

Lagunas, A.; Tsintzou, I.; Vida, Y.; Collado, D.; Pérez-Inestrosa, E.; Pereira, C. R.; Magalhaes, J.; Andrades, J. A.; Samitier, J. Tailoring RGD local surface density at the nanoscale toward adult stem cell chondrogenic commitment. Nano Res. 2017, 10, 1959–1971.

39

Zhang, M.; Sun, Q.; Liu, Y. L.; Chu, Z. Q.; Yu, L. X.; Hou, Y.; Kang, H.; Wei, Q.; Zhao, W. F.; Spatz, J. P. et al. Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. Biomaterials 2021, 268, 120543.

40

Arnold, M.; Cavalcanti-Adam, E. A.; Glass, R.; Blümmel, J.; Eck, W.; Kantlehner, M.; Kessler, H.; Spatz, J. P. Activation of integrin function by nanopatterned adhesive interfaces. ChemPhysChem 2004, 5, 383–388.

41

Huang, J. H.; Gräter, S. V.; Corbellini, F.; Rinck, S.; Bock, E.; Kemkemer, R.; Kessler, H.; Ding, J. D.; Spatz, J. P. Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 2009, 9, 1111–1116.

42

Liu, Y.; Medda, R.; Liu, Z.; Galior, K.; Yehl, K.; Spatz, J. P.; Cavalcanti-Adam, E. A.; Salaita, K. Nanoparticle tension probes patterned at the nanoscale: Impact of integrin clustering on force transmission. Nano Lett. 2014, 14, 5539–5546.

43

Ye, K.; Wang, X.; Cao, L. P.; Li, S. Y.; Li, Z. H.; Yu, L.; Ding, J. D. Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett. 2015, 15, 4720–4729.

44

Deng, J.; Zhao, C. S.; Spatz, J. P.; Wei, Q. Nanopatterned adhesive, stretchable hydrogel to control ligand spacing and regulate cell spreading and migration. ACS Nano 2017, 11, 8282–8291.

45

Gallant, N. D.; Capadona, J. R.; Frazier, A. B.; Collard, D. M.; García, A. J. Micropatterned surfaces to engineer focal adhesions for analysis of cell adhesion strengthening. Langmuir 2002, 18, 5579–5584.

46

Yao, X.; Peng, R.; Ding, J. D. Cell–material interactions revealed via material techniques of surface patterning. Adv. Mater. 2013, 25, 5257–5286.

47

Estévez, M.; Martínez, E.; Yarwood, S. J.; Dalby, M. J.; Samitier, J. Adhesion and migration of cells responding to microtopography. J. Biomed. Mater. Res. 2015, 103, 1659–1668.

48

Sonam, S.; Sathe, S. R.; Yim, E. K. F.; Sheetz, M. P.; Lim, C. T. Cell contractility arising from topography and shear flow determines human mesenchymal stem cell fate. Sci. Rep. 2016, 6, 20415.

49

Cao, B.; Peng, Y. M.; Liu, X. N.; Ding, J. D. Effects of functional groups of materials on nonspecific adhesion and chondrogenic induction of mesenchymal stem cells on free and micropatterned surfaces. ACS Appl. Mater. Interfaces 2017, 9, 23574–23585.

50

Cho, D. H.; Xie, T.; Truong, J.; Stoner, A. C.; Hahm, J. I. Recent advances towards single biomolecule level understanding of protein adsorption phenomena unique to nanoscale polymer surfaces with chemical variations. Nano Res. 2020, 13, 1295–1317.

51

Liu, R. L.; Ding, J. D. Chromosomal repositioning and gene regulation of cells on a micropillar array. ACS Appl. Mater. Interfaces 2020, 12, 35799–35812.

52

Yao, X.; Ding, J. D. Effects of microstripe geometry on guided cell migration. ACS Appl. Mater. Interfaces 2020, 12, 27971–27983.

53

Zhao, P.; Li, X.; Fang, Q.; Wang, F. L.; Ao, Q.; Wang, X. H.; Tian, X. H.; Tong, H.; Bai, S. L.; Fan, J. Surface modification of small intestine submucosa in tissue engineering. Regen. Biomater. 2020, 7, 339–348.

54

Yao, X.; Wang, X. L.; Ding, J. D. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater. 2021, 126, 92–108.

55

Chen, C. S.; Mrksich, M.; Huang, S.; Whitesides, G. M.; Ingber, D. E. Geometric control of cell life and death. Science 1997, 276, 1425–1428.

56

Yan, C.; Sun, J. G.; Ding, J. D. Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 2011, 32, 3931–3938.

57

Glass, R.; Möller, M.; Spatz, J. P. Block copolymer micelle nanolithography. Nanotechnology 2003, 14, 1153–1160.

58

Arnold, M.; Schwieder, M.; Blümmel, J.; Cavalcanti-Adam, E. A.; López-Garcia, M.; Kessler, H.; Geiger, B. et al. Cell interactions with hierarchically structured nano-patterned adhesive surfaces. Soft Matter 2009, 5, 72–77.

59

Wang, X.; Li, S. Y.; Yan, C.; Liu, P.; Ding, J. D. Fabrication of RGD micro/nanopattern and corresponding study of stem cell sifferentiation. Nano Lett. 2015, 15, 1457–1467.

60

Wang, L. Y.; Cai, P. Q.; Luo, J.; Zhang, F. L.; Liu, J.; Chen, Y. P.; Zhu, Z. P.; Song, Y. Y.; Yang, B. Q.; Liu, X. et al. Engineering subcellular-patterned biointerfaces to regulate the surface wetting of multicellular spheroids. Nano Res. 2018, 11, 5704–5715.

61

Dai, J.; Yao, Y. Adaptive ordering and filament polymerization of cell cytoskeleton by tunable nanoarrays. Nano Res. 2021, 14, 620– 627.

62

Yao, X.; Liu, R. L.; Liang, X. Y.; Ding, J. D. Critical areas of proliferation of single cells on micropatterned surfaces and corresponding cell type dependence. ACS Appl. Mater. Interfaces 2019, 11, 15366–15380.

63

Xiong, J. P.; Stehle, T.; Diefenbach, B.; Zhang, R. G.; Dunker, R.; Scott, D. L.; Joachimiak, A.; Goodman, S. L.; Arnaout, M. A. Crystal structure of the extracellular segment of integrin αVβ3. Science 2001, 294, 339–345.

64

Xiong, J. P.; Stehle, T.; Zhang, R. G.; Joachimiak, A.; Frech, M.; Goodman, S. L.; Arnaout, M. A. Crystal structure of the extracellular segment of integrin αVβ3 in complex with an Arg-Gly-Asp ligand. Science 2002, 296, 151–155.

65

Jiang, Y. H.; Jahagirdar, B. N.; Reinhardt, R. L.; Schwartz, R. E.; Keene, C. D.; Ortiz-Gonzalez, X. R.; Reyes, M.; Lenvik, T.; Lund, T.; Blackstad, M. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002, 418, 41–49.

66

Even-Ram, S.; Artym, V.; Yamada, K. M. Matrix control of stem cell fate. Cell 2006, 126, 645–647.

67

Peng, R.; Yao, X.; Ding, J. D. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. Biomaterials 2011, 32, 8048–8057.

68

Peng, Y. M.; Liu, Q. J.; He, T. L.; Ye, K.; Yao, X.; Ding, J. D. Degradation rate affords a dynamic cue to regulate stem cells beyond varied matrix stiffness. Biomaterials 2018, 178, 467–480.

69

Saburi, E.; Abazari, M. F.; Hassannia, H.; Mansour, R. N.; Eshaghi- Gorji, R.; Gheibi, M.; Rahmati, M.; Enderami, S. E. The use of mesenchymal stem cells in the process of treatment and tissue regeneration after recovery in patients with Covid-19. Gene 2021, 777, 145471.

70

Mao, T. J.; He, Y. N.; Gu, Y. X.; Yang, Y. Q.; Yu, Y.; Wang, X. L.; Ding, J. D. Critical frequency and critical stretching rate for reorientation of cells on a cyclically stretched polymer in a microfluidic chip. ACS Appl. Mater. Interfaces 2021, 13, 13934–13948.

71

Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S. L.; Jonczyk, A.; Kessler, H. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J. Am. Chem. Soc. 1996, 118, 7461–7472.

72

Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: Bioma­terials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385–4415.

73

Cui, S. Q.; Yu, L.; Ding, J. D. Strategy of "Block Blends" to generate polymeric thermogels versus that of one-component block copolymer. Macromolecules 2020, 53, 11051–11064.

74

Cui, S. Q.; Chen, L.; Yu, L.; Ding, J. D. Synergism among polydispersed amphiphilic block copolymers leading to spontaneous physical hydrogelation upon heating. Macromolecules 2020, 53, 7726–7739.

75

Lehnert, D.; Wehrle-Haller, B.; David, C.; Weiland, U.; Ballestrem, C.; Imhof, B. A.; Bastmeyer, M. Cell behaviour on micropatterned substrata: Limits of extracellular matrix geometry for spreading and adhesion. J. Cell Sci. 2004, 117, 41–52.

76

Gallant, N. D.; Michael, K. E.; García, A. J. Cell adhesion strengthening: Contributions of adhesive area, integrin binding, and focal adhesion assembly. Mol. Biol. Cell 2005, 16, 4329–4340.

77

Coyer, S. R.; Singh, A.; Dumbauld, D. W.; Calderwood, D. A.; Craig, S. W.; Delamarche, E.; García, A. J. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. J. Cell Sci. 2012, 125, 5110–5123.

78

Wang, R.; Lin, T. S.; Johnson, J. A.; Olsen, B. D. Kinetic monte carlo simulation for quantification of the gel point of polymer networks. ACS Marco Lett. 2017, 6, 1414–1419.

79

Guo, M.; Pegoraro, A. F.; Mao, A.; Zhou, E. H.; Arany, P. R.; Han, Y. L.; Burnette, D. T.; Jensen, M. H.; Kasza, K. E.; Moore, J. R. et al. Cell volume changethrough water efflux impacts cell stiffness and stem cell fate. Proc. Natl. Acad. Sci. USA 2017, 114, E8618–E8627.

80

Chen, C. S.; Alonso, J. L.; Ostuni, E.; Whitesides, G. M.; Ingber, D. E. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 2003, 307, 355–361.

81

Jiun, K.; Hong, S. Y.; Park, H. S.; Kim, D. S.; Lee, W. Structure and function of RGD peptides derived from disintegrin proteins. Mol. Cells 2005, 19, 205–211.

82

Takagi, J.; Petre, B. M.; Walz, T.; Springer, T. A. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002, 110, 599–611.

83

Craig, D.; Gao, M.; Schulten, K.; Vogel, V. Structural insights into how the MIDAS ion stabilizes integrin binding to an RGD peptide under force. Structure 2004, 12, 2049–2058.

84

Wong, S. H. D.; Yin, B. H.; Yang, B. G.; Lin, S. E.; Li, R.; Feng, Q.; Yang, H. R.; Zhang, L.; Yang, Z. M.; Li, G. et al. Anisotropic nanoscale presentation of cell adhesion ligand enhances the recruitment of diverse integrins in adhesion structures and mechanosensing- dependent differentiation of stem cells. Adv. Funct. Mater. 2019, 29, 1806822.

85

Meyer, R. K.; Aebi, U. Bundling of actin filaments by α-Actinin depends on its molecular length. J. Cell Biol. 1990, 110, 2013–2024.

86

Arnold, M.; Hirschfeld-Warneken, V. C.; Lohmüller, T.; Heil, P.; Blümmel, J.; Cavalcanti-Adam, E. A.; López-García, M.; Walther, P.; Kessler, H.; Geiger, B. et al. Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 2008, 8, 2063–2069.

File
12274_2021_3711_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2021
Revised: 19 June 2021
Accepted: 24 June 2021
Published: 12 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Key R & D Program of China (No. 2016YFC1100300) and the National Natural Science Foundation of China (Nos. 21961160721 and 21704018).

Return