Journal Home > Volume 15 , Issue 2

Artificial defect engineering in transition metal oxides is of important terms for numerous applications. In the present work, we proposed an in-situ gas reduction strategy to introduce ordered defects into titanium niobium oxide embedding on vapor grew carbon fibers (Ti2Nb10O29–x@VGCFs). High-resolution transmission electron microscopy (HRTEM) and fast Fourier transform (FFT) simulation indicate that the ordered oxygen defects locate at interval layers, which leads to a new superstructure in Ti2Nb10O29. The ordered defects could provide extra active sites for lithium-ion storage and modulate ionic migration, resulting an enhanced pseudocapacitive performance. In addition, the excellent structural stability of the superstructure was proved by in-situ HRTEM under a harsh electrochemical process. Our work provides a directly observation of orderly defective superstructure in transition metal oxide, and its functionality on electrochemistry was revealed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Orderly defective superstructure for enhanced pseudocapacitive storage in titanium niobium oxide

Show Author's information Le Yang1,§Jinfeng Zeng1,3,§Lei Zhou1Ruiwen Shao2( )Wellars Utetiwabo1Muhammad Khurram Tufail1Saisai Wang1Wen Yang1( )Jiatao Zhang1
Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion MaterialsSchool of Chemistry and Chemical Engineering, Beijing Institute of TechnologyBeijing100081China
Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of convergence in medicine and engineeringBeijing institute of technologyBeijing100081China
Key Laboratory of Active Components of Xinjiang Natural Medicine and Drug Release TechnologySchool of Pharmacy, Xinjiang Medical UniversityUrumqi830011China

§ Le Yang and Jinfeng Zeng contributed equally to this work.

Abstract

Artificial defect engineering in transition metal oxides is of important terms for numerous applications. In the present work, we proposed an in-situ gas reduction strategy to introduce ordered defects into titanium niobium oxide embedding on vapor grew carbon fibers (Ti2Nb10O29–x@VGCFs). High-resolution transmission electron microscopy (HRTEM) and fast Fourier transform (FFT) simulation indicate that the ordered oxygen defects locate at interval layers, which leads to a new superstructure in Ti2Nb10O29. The ordered defects could provide extra active sites for lithium-ion storage and modulate ionic migration, resulting an enhanced pseudocapacitive performance. In addition, the excellent structural stability of the superstructure was proved by in-situ HRTEM under a harsh electrochemical process. Our work provides a directly observation of orderly defective superstructure in transition metal oxide, and its functionality on electrochemistry was revealed.

Keywords: pseudocapacitance, Ti2Nb10O29, in-situ gas reduction, ordered defect, lithium-ion hybrid capacitor

References(55)

1

Wang, A. L.; Cao, Z. Y.; Wang, J. W.; Wang, S. R.; Li, C. B.; Li, N.; Xie, L. S.; Xiang, Y.; Li, T. S.; Niu, X. B. et al. Vacancy defect modulation in hot-casted NiOx film for efficient inverted planar perovskite solar cells. J. Energy Chem. 2020, 48, 426-434.

2

Li, G. W.; Blake, G. R.; Palstra, T. T. M. Vacancies in functional materials for clean energy storage and harvesting: The perfect imperfection. Chem. Soc. Rev. 2017, 46, 1693-1706.

3

Uchaker, E.; Cao, G. Z. The role of intentionally introduced defects on electrode materials for alkali-ion batteries. Chem. Asian. J. 2015, 10, 1608-1617.

4

Zhang, X. Y.; Liu, X. Q.; Zeng, Y. X.; Tong, Y. X.; Lu, X. H. Oxygen defects in promoting the electrochemical performance of metal oxides for supercapacitors: Recent advances and challenges. Small Methods 2020, 4, 1900823.

5

Liu, T. T.; Peng, N.; Zhang, X. K.; Zheng, R. T.; Xia, M. T.; Yu, H. X.; Shui, M.; Xie, Y.; Shu, J. Controllable defect engineering enhanced bond strength for stable electrochemical energy storage. Nano Energy 2021, 79, 105460.

6

Gao, X.; Ikuhara, Y. H.; Fisher, C. A. J.; Huang, R.; Kuwabara, A.; Moriwake, H.; Kohama, K.; Ikuhara, Y. Oxygen loss and surface degradation during electrochemical cycling of lithium-ion battery cathode material LiMn2O4. J. Mater. Chem. A 2019, 7, 8845-8854.

7

Hahn, B. P.; Long, J. W.; Rolison, D. R. Something from nothing: Enhancing electrochemical charge storage with cation vacancies. Acc. Chem. Res. 2013, 46, 1181-1191.

8

Sharifi-Asl, S.; Lu, J.; Amine, K.; Shahbazian-Yassar, R. Oxygen release degradation in Li-ion battery cathode materials: Mechanisms and mitigating approaches. Adv. Energy Mater. 2019, 9, 1900551.

9

Pender, J. P.; Jha, G.; Youn, D. H.; Ziegler, J. M.; Andoni, I.; Choi, E. J.; Heller, A.; Dunn, B. S.; Weiss, P. S.; Penner, R. M. et al. Electrode degradation in lithium-ion batteries. ACS Nano 2020, 14, 1243-1295.

10

Li, M.; Bi, X. X.; Amine, K.; Lu, J. Oxygen-based anion redox for lithium batteries. Acc. Chem. Res. 2020, 53, 1436-1444.

11

Lee, D.; Gao, X.; Sun, L. X.; Jee, Y.; Poplawsky, J.; Farmer, T. O.; Fan, L. S.; Guo, E. J.; Lu, Q. Y.; Heller, W. T. et al. Colossal oxygen vacancy formation at a fluorite-bixbyite interface. Nat. Commun. 2020, 11, 1371.

12

Colin, J. F.; Pralong, V.; Hervieu, M.; Caignaert, V.; Raveau, B. New titanoniobates (Li, H)2TiNbO5 and (Li, H)3TiNbO5: Synthesis, structure and properties. J. Mater. Chem. 2008, 18, 3121-3128.

13

Deng, S. J.; Luo, Z. B.; Liu, Y. T.; Lou, X. M.; Lin, C. F.; Yang, C.; Zhao, H.; Zheng, P.; Sun, Z. L.; Li, J. B. et al. Ti2Nb10O29-x mesoporous microspheres as promising anode materials for high-performance lithium-ion batteries. J. Power Sources 2017, 362, 250-257.

14

Yao, Z. J.; Xia, X. H.; Zhang, S. Z.; Zhou, C. A.; Pan, G. X.; Xiong, Q. Q.; Wang, Y. D.; Wang, X. L.; Tu, J. P. Oxygen defect boosted N-doped Ti2Nb10O29 anchored on core-branch carbon skeleton for both high-rate liquid & solid-state lithium ion batteries. Energy Storage Mater. 2020, 25 555-562.

15

Deng, S. J.; Zhang, Y.; Xie, D.; Yang, L.; Wang, G. Z.; Zheng, X. S.; Zhu, J. F.; Wang, X. L.; Yu, Y.; Pan, G. X. et al. Oxygen vacancy modulated Ti2Nb10O29-x embedded onto porous bacterial cellulose carbon for highly efficient lithium ion storage. Nano Energy 2019, 58, 355-364.

16

Bayeh, A. W.; Kabtamu, D. M.; Chang, Y. C.; Chen, G. C.; Chen, H. Y.; Lin, G. Y.; Liu, T. R.; Wondimu, T. H.; Wang, K. C.; Wang, C. H. Synergistic effects of a TiNb2O7-reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries. J. Mater. Chem. A 2018, 6, 13908-13917.

17

Ejigu, A.; Edwards, M.; Walsh, D. A. Synergistic catalyst-support interactions in a graphene-Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 2015, 5, 7122-7130.

18

Liu, A.; Zhang, H. T; Xing, C. X; Wang, Y. L.; Zhang, J. W.; Zhang, X. X.; Zhang, S. J. Intensified energy storage in high-voltage nanohybrid supercapacitors via the efficient coupling between TiNb2O7/holey-rGO nanoarchitectures and ionic liquid-based electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 21349-21361.

19

Utetiwabo, W.; Yang, L.; Tufail, M. K.; Zhou, L.; Chen, R. J.; Lian, Y. M.; Yang, W. Electrode materials derived from plastic wastes and other industrial wastes for supercapacitors. Chin. Chem. Lett. 2020, 31, 1474-1489.

20

Shadike, Z.; Zhou, Y. N.; Chen, L. L.; Wu, Q.; Yue, J. L.; Zhang, N.; Yang, X. Q.; Gu, L.; Liu, X. S.; Shi, S. Q. et al. Antisite occupation induced single anionic redox chemistry and structural stabilization of layered sodium chromium sulfide. Nat. Commun. 2017, 8, 566.

21

Wu, Y. X.; Nan, P. F.; Chen, Z. W.; Zeng, Z. Z.; Liu, R. H.; Dong, H. L.; Xie, L.; Xiao, Y. W.; Chen, Z. Q.; Gu, H. K. et al. Thermoelectric enhancements in PbTe alloys due to dislocation-induced strains and converged bands. Adv. Sci. 2020, 7, 1902628.

22

Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crys. A 1976, 32, 751-767.

23

Lin, C. F.; Yu, S.; Zhao, H.; Wu, S. Q.; Wang, G. Z.; Yu, L.; Li, Y. F.; Zhu, Z. Z.; Li, J. B.; Lin, S. W. Defective Ti2Nb10O27.1: An advanced anode material for lithium-ion batteries. Sci. Rep. 2015, 5, 17836.

24

Nakamura, K.; Sato, Y.; Takase, T. Analysis of oxidation behavior of vapor-grown carbon fiber (VGCF) under dry air. Mater. Lett. 2016, 180, 302-304.

25

Zeng, Y. X.; Lai, Z. Z.; Han, Y.; Zhang, H. Z.; Xie, S. L.; Lu, X. H. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv. Mater. 2018, 30, 1802396.

26

Pham, V. H.; Nguyen-Phan, T. D.; Tong, X.; Rajagopalan, B.; Chung, J. S.; Dickerson, J. H. Hydrogenated TiO2@reduced graphene oxide sandwich-like nanosheets for high voltage supercapacitor applications. Carbon 2018, 126, 135-144.

27

Wang, X. F.; Shen, G. Z. Intercalation pseudo-capacitive TiNb2O7@carbon electrode for high-performance lithium ion hybrid electrochemical supercapacitors with ultrahigh energy density. Nano Energy 2015, 15, 104-115.

28

Orliukas, A. F.; Fung, K. Z.; Venckutė, V.; Kazlauskienė, V.; Miškinis, J.; Lelis, M. Structure, surface and broadband impedance spectroscopy of Li4Ti5O12 based ceramics with Nb and Ta. Solid State Ion. 2015, 271, 34-41.

29

Yoon, W. S.; Balasubramanian, M.; Chung, K. Y.; Yang, X. Q.; McBreen, J.; Grey, C. P.; Fischer, D. A. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. J. Am. Chem. Soc. 2005, 49, 17479-17487.

30

Wan, J. W.; Chen, W. X.; Jia, C. Y.; Zheng, L. R.; Dong, J. C.; Zheng, X. S.; Wang, Y.; Yan, W. S.; Chen, C.; Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

31

Zhang, N.; Jalil, A.; Wu, D. X.; Chen, S. M.; Liu, Y. F.; Gao, C.; Ye, W.; Qi, Z. M.; Ju, H. X.; Wang, C. M. et al. Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 2018, 140, 9434-9443.

32

Lu, X.; Jian, Z. L.; Fang, Z.; Gu, L.; Hu, Y. S.; Chen, W.; Wang, Z. X.; Chen, L. Q. Atomic-scale investigation on lithium storage mechanism in TiNb2O7. Energ. Environ. Sci. 2011, 4, 2638-2644.

33

Wei, M. D.; Wei, K. M.; Ichihara, M.; Zhou, H. S. Nb2O5 nanobelts: A lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 2008, 10, 980-983.

34

Tang, K.; Mu, X. K.; Van Aken, P. A.; Yu, Y.; Maier, J. "Nano-Pearl- String" TiNb2O7 as anodes for rechargeable lithium batteries. Adv. Energy Mater. 2013, 3, 49-53.

35

Le Viet, A.; Reddy, M. V.; Jose, R.; Chowdari, B. V. R.; Ramakrishna, S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J. Phys. Chem. C 2010, 114, 664-671.

36

Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. , Int. Ed. 2011, 50, 2904-2939.

37

Liu, X. D.; Wang, H.; Zhang, S. Y.; Liu, G. Y.; Xie, H. Q.; Ma, J. M. Design of well-defined porous Ti2Nb10O29/C microspheres assembled from nanoparticles as anode materials for high-rate lithium ion batteries. Electrochim. Acta 2018, 292, 759-768.

38

Pham-Cong, D.; Kim, J.; Tran, V. T.; Kim, S. J.; Jeong, S. Y.; Choi, J. H.; Cho, C. R. Electrochemical behavior of interconnected Ti2Nb10O29 nanoparticles for high-power Li-ion battery anodes. Electrochim. Acta 2017, 236, 451-459.

39

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energ. Environ. Sci. 2014, 7, 1597-1614.

40

Raju, V.; Rains, J.; Gates, C.; Luo, W.; Wang, X. F.; Stickle, W. F.; Stucky, G. D.; Ji, X. L. Superior cathode of sodium-ion batteries: Orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition. Nano Lett. 2014, 14, 4119-4124.

41

Jung, H. G.; Hassoun, J.; Park, J. B.; Sun, Y. K.; Scrosati, B. An improved high-performance lithium-air battery. Nat. Chem. 2012, 4, 579-585.

42

Yang, L.; Hu, M. X.; Lv, Q.; Zhang, H. W.; Yang, W.; Lv, R. Salt and sugar derived high power carbon microspheres anode with excellent low-potential capacity. Carbon 2020, 163, 288-296.

43

Fei, L.; Lin, Q. L.; Yuan, B.; Chen, G.; Xie, P.; Li, Y. L.; Xu, Y.; Deng, S. G.; Smirnov, S.; Luo, H. M. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Appl. Mater. Interfaces 2013, 5, 5330-5335.

44

Zhu, Y. R.; Li, J. Y.; Yun, X. R.; Chen, X. H.; Yao, J. J.; Lu, Z. H., Design and fabrication of advanced cathode and anode materials for hybrid supercapacitors based on graphitic carbon quantum dot-decorated reduced graphene oxide composite aerogels. ACS Appl. Energy Mater. 2021, 4, 714-729.

45

Fleischmann, S.; Widmaier, M.; Schreiber, A.; Shim, H.; Stiemke, F. M.; Schubert, T. J. S.; Presser, V. High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Mater. 2019, 16, 391-399.

46

Wei, J. S.; Ding, C.; Zhang, P.; Ding, H.; Niu, X. Q.; Ma, Y. Y.; Li, C.; Wang, Y. G.; Xiong, H. M. Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv. Mater. 2019, 31, 1806197.

47

Wang, X.; Yan, C.; Yan, J.; Sumboja, A.; Lee, P. S. Orthorhombic niobium oxide nanowires for next generation hybrid supercapacitor device. Nano Energy 2015, 11, 765-772.

48

Aravindan, V.; Sundaramurthy, J.; Jain, A.; Kumar, P. S.; Ling, W. C.; Ramakrishna, S.; Srinivasan, M. P.; Madhavi, S. Unveiling TiNb2O7 as an insertion anode for lithium ion capacitors with high energy and power density. ChemSusChem 2014, 7, 1858-1863.

49

Jung, H. G.; Venugopal, N.; Scrosati, B.; Sun, Y. K. A high energy and power density hybrid supercapacitor based on an advanced carbon-coated Li4Ti5O12 electrode. J. Power Sources 2013, 221, 266-271.

50

Aravindan, V.; Shubha, N.; Ling, W. C.; Madhavi, S. Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J. Mater. Chem. A 2013, 1, 6145-6151.

51

Wang, Q.; Wen, Z. H.; Li, J. H. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv. Funct. Mater. 2006, 16, 2141-2146.

52

Wang, H. X.; Cui, Y. Nanodiamonds for energy. Carbon Energy 2019, 1, 13-18.

53

Shi, Y. Y.; Liu, G. J.; Jin, R. C.; Xu, H.; Wang, Q. Y.; Gao, S. M. Carbon materials from melamine sponges for supercapacitors and lithium battery electrode materials: A review. Carbon Energy 2019, 1, 253-275.

54

Zheng, S. H.; Wu, Z. S.; Zhou F.; Wang X.; Ma J. M.; Liu C.; He Y. B.; Bao X. H. All-solid-state planar integrated lithium ion micro- batteries with extraordinary flexibility and high-temperature performance. Nano Energy, 2018, 51, 613-620.

55

Zheng, S. H.; Ma, J. M.; Wu, Z. S.; Zhou, F.; He, Y. B.; Kang, F. Y.; Cheng, H. M.; Bao, X. H. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 2018, 11, 2001-2009.

File
12274_2021_3703_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 May 2021
Revised: 20 June 2021
Accepted: 20 June 2021
Published: 24 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The work was supported by the National Key R & D Program of China (No. 2018YFB1304902), the National Natural Science Foundation of China (Nos. 21975025, 21203008, and 11904372), the Beijing Natural Science Foundation (No. 2172051). XRD measurements were performed in the Analysis & Testing Center, Beijing Institute of Technology. We appreciated help from Dr. Hongwei Ma (Analysis & Testing Center) for XRD analysis. The authors acknowledge Analysis and Testing Center in Beijing Institute of Technology.

Return