Journal Home > Volume 15 , Issue 2

Scanning electrochemical cell microscopy (SECCM) is increasingly applied to determine the intrinsic catalytic activity of single electrocatalyst particle. This is especially feasible if the catalyst nanoparticles are large enough that they can be found and counted in post-SECCM scanning electron microscopy images. Evidently, this becomes impossible for very small nanoparticles and hence, a catalytic current measured in one landing zone of the SECCM droplet cannot be correlated to the exact number of catalyst particles. We show, that by introducing a ruler method employing a carbon nanoelectrode decorated with a countable number of the same catalyst particles from which the catalytic activity can be determined, the activity determined using SECCM from many spots can be converted in the intrinsic catalytic activity of a certain number of catalyst nanoparticles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Calibrating SECCM measurements by means of a nanoelectrode ruler. The intrinsic oxygen reduction activity of PtNi catalyst nanoparticles

Show Author's information Emmanuel Batsa Tetteh1,§Tobias Löffler1,§Tsvetan Tarnev1Thomas Quast1Patrick Wilde1Harshitha Barike Aiyappa1Simon Schumacher2Corina Andronescu2Richard D. Tilley3Xingxing Chen4( )Wolfgang Schuhmann1( )
Analytical Chemistry–Center for Electrochemical Sciences, Faculty of Chemistry and BiochemistryRuhr University Bochum, Universitätsstr150, D-44780 BochumGermany
Chemical Technology Ⅲ, Faculty of Chemistry and CENIDE-Center for NanointegrationUniversity Duisburg EssenCarl Benz Str. 199, D-47057 DuisburgGermany
School of Chemistry and Australian Centre for NanoMedicineUniversity of New South WalesSydney2052Australia
Research Group of Functional Materials for Electrochemical Energy ConversionSchool of Chemical Engineering, University of Science and Technology LiaoningAnshan114051China

§ Emmanuel Batsa Tetteh and Tobias Löffler contributed equally to this work.

Abstract

Scanning electrochemical cell microscopy (SECCM) is increasingly applied to determine the intrinsic catalytic activity of single electrocatalyst particle. This is especially feasible if the catalyst nanoparticles are large enough that they can be found and counted in post-SECCM scanning electron microscopy images. Evidently, this becomes impossible for very small nanoparticles and hence, a catalytic current measured in one landing zone of the SECCM droplet cannot be correlated to the exact number of catalyst particles. We show, that by introducing a ruler method employing a carbon nanoelectrode decorated with a countable number of the same catalyst particles from which the catalytic activity can be determined, the activity determined using SECCM from many spots can be converted in the intrinsic catalytic activity of a certain number of catalyst nanoparticles.

Keywords: single entity electrochemistry, intrinsic electrocatalytic activity, nanoelectrochemistry, scanning electrochemical cell microscopy (SECCM), PtNi nanoparticles, alkaline medium

References(45)

1

Nesselberger, M.; Ashton, S.; Meier, J. C.; Katsounaros, I.; Mayrhofer, K. J. J.; Arenz, M. The particle size effect on the oxygen reduction reaction activity of Pt catalysts: Influence of electrolyte and relation to single crystal models. J. Am. Chem. Soc. 2011, 133, 17428-17433.

2

Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. Mesostructure- induced selectivity in CO2 reduction catalysis. J. Am. Chem. Soc. 2015, 137, 14834-14837.

3

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

4

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

5

Sasikumar, G.; Ihm, J.W.; Ryu, H. Dependence of optimum Nafion content in catalyst layer on platinum loading. J. Power Sources 2004, 132, 11-17.

6

Batchelor, T. A. A.; Pedersen, J. K.; Winther, S. H.; Castelli, I. E.; Jacobsen, K. W.; Rossmeisl, J. High-entropy alloys as a discovery platform for electrocatalysis. Joule 2019, 3, 834-845.

7

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886-17892.

8

Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893-897.

9

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361-365.

10

Chai, G. L.; Qiu, K. P.; Qiao, M.; Titirici, M. M.; Shang, C. X.; Guo, Z. X. Active sites engineering leads to exceptional ORR and OER bifunctionality in P, N Co-doped graphene frameworks. Energy Environ. Sci. 2017, 10, 1186-1195.

11

Batchellor, A. S.; Boettcher, S. W. Pulse-electrodeposited Ni-Fe (oxy)hydroxide oxygen evolution electrocatalysts with high geometric and intrinsic activities at large mass loadings. ACS Catal. 2015, 5, 6680-6689.

12

Pope, M. A.; Punckt, C.; Aksay, I. A. Intrinsic capacitance and redox activity of functionalized graphene sheets. J. Phys. Chem. C 2011, 115, 20326-20334.

13

Löffler, T.; Wilde, P.; Öhl, D.; Chen, Y. T.; Tschulik, K.; Schuhmann, W. Evaluation of the intrinsic catalytic activity of nanoparticles without prior knowledge of the mass loading. Faraday Discuss. 2018, 210, 317-332.

14

Wang, Y.; Laborda, E.; Plowman, B. J.; Tschulik, K.; Ward, K. R.; Palgrave, R. G.; Damm, C.; Compton, R. G. The strong catalytic effect of Pb(Ⅱ) on the oxygen reduction reaction on 5 nm gold nanoparticles. Phys. Chem. Chem. Phys. 2014, 16, 3200-3208.

15

Wang, Y.; Laborda, E.; Tschulik, K.; Damm, C.; Molina, A.; Compton, R. G. Strong negative nanocatalysis: Oxygen reduction and hydrogen evolution at very small (2 nm) gold nanoparticles. Nanoscale 2014, 6, 11024-11030.

16

Wilde, P.; Barwe, S.; Andronescu, C.; Schuhmann, W.; Ventosa, E. High resolution, binder-free investigation of the intrinsic activity of immobilized NiFe LDH nanoparticles on etched carbon nanoelectrodes. Nano Res. 2018, 11, 6034-6044.

17

Lai, S. C. S.; Dudin, P. V.; Macpherson, J. V.; Unwin, P. R. Visualizing zeptomole (electro)catalysis at single nanoparticles within an ensemble. J. Am. Chem. Soc. 2011, 133, 10744-10747.

18

Li, Y. X.; Cox, J. T.; Zhang, B. Electrochemical responses and electrocatalysis at single Au nanoparticles. J. Am. Chem. Soc. 2010, 132, 3047-3054.

19

Kang, M.; Perry, D.; Bentley, C. L.; West, G.; Page, A.; Unwin, P. R. Simultaneous topography and reaction flux mapping at and around electrocatalytic nanoparticles. ACS Nano 2017, 11, 9525-9535.

20

Ly, L. S. Y.; Batchelor-McAuley, C.; Tschulik, K.; Kätelhön, E.; Compton, R. G. A critical evaluation of the interpretation of electrocatalytic nanoimpacts. J. Phys. Chem. C 2014, 118, 17756-17763.

21

Ebejer, N.; Schnippering, M.; Colburn, A. W.; Edwards, M. A.; Unwin, P. R. Localized high resolution electrochemistry and multifunctional imaging: Scanning electrochemical cell microscopy. Anal. Chem. 2010, 82, 9141-9145.

22

Wahab, O. J.; Kang, M.; Unwin, P. R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry. Curr. Opin. Electrochem. 2020, 22, 120-128.

23

Snowden, M. E.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Ebejer, N.; O'Connell, M. A.; Colburn, A. W.; Unwin, P. R. Scanning electrochemical cell microscopy: Theory and experiment for quantitative high resolution spatially-resolved voltammetry and simultaneous ion-conductance measurements. Anal. Chem. 2012, 84, 2483-2491.

24

Güell, A. G.; Cuharuc, A. S.; Kim, Y. R.; Zhang, G. H.; Tan, S. Y.; Ebejer, N.; Unwin, P. R. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges. ACS Nano 2015, 9, 3558-3571.

25

Aaronson, B. D. B.; Chen, C. H.; Li, H. J.; Koper, M. T. M.; Lai, S. C. S.; Unwin, P. R. Pseudo-single-crystal electrochemistry on polycrystalline electrodes: Visualizing activity at grains and grain boundaries on platinum for the Fe2+/Fe3+ redox reaction. J. Am. Chem. Soc. 2013, 135, 3873-3880.

26

Bentley, C. L.; Andronescu, C.; Smialkowski, M.; Kang, M.; Tarnev, T.; Marler, B.; Unwin, P. R.; Apfel, U. P.; Schuhmann, W. Local surface structure and composition control the hydrogen evolution reaction on Iron Nickel sulfides. Angew. Chem. , Int. Ed. 2018, 57, 4093-4097.

27

Chen, C. H.; Jacobse, L.; McKelvey, K.; Lai, S. C. S.; Koper, M. T. M.; Unwin, P. R. Voltammetric scanning electrochemical cell microscopy: Dynamic imaging of hydrazine electro-oxidation on platinum electrodes. Anal. Chem. 2015, 87, 5782-5789.

28

Tao, B. L.; Unwin, P. R.; Bentley, C. L. Nanoscale variations in the electrocatalytic activity of layered transition-metal dichalcogenides. J. Phys. Chem. C 2020, 124, 789-798.

29

Bentley, C. L.; Agoston, R.; Tao, B. L.; Walker, M.; Xu, X. D.; O'Mullane, A. P.; Unwin, P. R. Correlating the local electrocatalytic activity of amorphous molybdenum sulfide thin films with microscopic composition, structure, and porosity. ACS Appl. Mater. Interfaces 2020, 12, 44307-44316.

30

Oseland, E. E.; Ayres, Z. J.; Basile, A.; Haddleton, D. M.; Wilson, P.; Unwin, P. R. Surface patterning of polyacrylamide gel using scanning electrochemical cell microscopy (SECCM). Chem. Commun. 2016, 52, 9929-9932.

31

Gao, R.; Edwards, M. A.; Qiu, Y. H.; Barman, K.; White, H. S. Visualization of hydrogen evolution at individual platinum nanoparticles at a buried interface. J. Am. Chem. Soc. 2020, 142, 8890-8896.

32

Choi, M.; Siepser, N. P.; Jeong, S.; Wang, Y.; Jagdale, G.; Ye, X. C.; Baker, L. A. Probing single-particle electrocatalytic activity at facet-controlled gold nanocrystals. Nano Lett. 2020, 20, 1233-1239.

33

Chen, C. H.; Ravenhill, E. R.; Momotenko, D.; Kim, Y. R.; Lai, S. C. S.; Unwin, P. R. Impact of surface chemistry on nanoparticle- electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 2015, 31, 11932-11942.

34

Kleijn, S. E. F.; Lai, S. C. S.; Miller, T. S.; Yanson, A. I.; Koper, M. T. M.; Unwin, P. R. Landing and catalytic characterization of individual nanoparticles on electrode surfaces. J. Am. Chem. Soc. 2012, 134, 18558-18561.

35

Saha, P.; Hill, J. W.; Walmsley, J. D.; Hill, C. M. Probing electrocatalysis at individual Au nanorods via correlated optical and electrochemical measurements. Anal. Chem. 2018, 90, 12832-12839.

36

Ornelas, I. M.; Unwin, P. R.; Bentley, C. L. High-throughput correlative electrochemistry-microscopy at a transmission electron microscopy grid electrode. Anal. Chem. 2019, 91, 14854-14859.

37

Ustarroz, J.; Ornelas, I. M.; Zhang, G. H.; Perry, D.; Kang, M.; Bentley, C. L.; Walker, M.; Unwin, P. R. Mobility and poisoning of mass-selected platinum nanoclusters during the oxygen reduction reaction. ACS Catal. 2018, 8, 6775-6790.

38

Chen, C. H.; Meadows, K. E.; Cuharuc, A.; Lai, S. C. S.; Unwin, P. R. High resolution mapping of oxygen reduction reaction kinetics at polycrystalline platinum electrodes. Phys. Chem. Chem. Phys. 2014, 16, 18545-18552.

39

Bentley, C. L.; Kang, M.; Unwin, P. R. Scanning electrochemical cell microscopy (SECCM) in aprotic solvents: Practical considerations and applications. Anal. Chem. 2020, 92, 11673-11680.

40

Hill, J. W.; Fu, Z. G.; Tian, J. F.; Hill, C. M. Locally engineering and interrogating the photoelectrochemical behavior of defects in transition metal dichalcogenides. J. Phys. Chem. C 2020, 124, 17141-17149.

41

Daviddi, E.; Shkirskiy, V.; Kirkman, P. M.; Robin, M. P.; Bentley, C. L.; Unwin, P. R. Nanoscale electrochemistry in a copper/aqueous/oil three-phase system: surface structure-activity-corrosion potential relationships. Chem. Sci. 2021, 12, 3055-3069.

42

Li, Y. J.; Morel, A.; Gallant, D.; Mauzeroll, J. Oil-immersed scanning micropipette contact method enabling long-term corrosion mapping. Anal. Chem. 2020, 92, 12415-12422.

43

Yang, N. J.; Yu, S. Y.; Macpherson, J. V.; Einaga, Y.; Zhao, H. Y.; Zhao, G. H.; Swain, G. M.; Jiang, X. Conductive diamond: synthesis, properties, and electrochemical applications. Chem. Soc. Rev. 2019, 48, 157-204.

44

Yu, Y. S.; Yang, W. W.; Sun, X. L.; Zhu, W. L.; Li, X. Z.; Sellmyer, D. J.; Sun, S. H. Monodisperse MPt (M=Fe, Co, Ni, Cu, Zn) nanoparticles prepared from a facile oleylamine reduction of metal salts. Nano Lett. 2014, 14, 2778-2782.

45

Benedetti, T. M.; Andronescu, C.; Cheong, S.; Wilde, P.; Wordsworth, J.; Kientz, M.; Tilley, R. D.; Schuhmann, W.; Gooding, J. J. Electrocatalytic nanoparticles that mimic the three-dimensional geometric architecture of enzymes: Nanozymes. J. Am. Chem. Soc. 2018, 140, 13449-13455.

File
12274_2021_3702_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 April 2021
Revised: 19 June 2021
Accepted: 20 June 2021
Published: 19 August 2021
Issue date: February 2022

Copyright

© The Author(s) 2021

Acknowledgements

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement CasCat [833408]) as well as from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie MSCA-ITN Single-Entity Nanoelectro-chemistry, Sentinel [812398]. S. S. and C. A. acknowledge the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the project [440951282]. X. X. C. acknowledges financial support from the Liaoning BaiQianWan Talents Program, China (No. 2019B042), and the Excellent Young Scientific and Technological Talents Project of Educational Department of Liaoning Province, China (No. 2020LNQN07). We acknowledge Prof. Patrick Unwin from the University of Warwick for providing the initial control software (WEC-SPM) for our SECCM experiments.

Return