Journal Home > Volume 15 , Issue 2

Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their high stability, easy preparation, and tunable catalytic properties, especially in the field of cancer therapy. However, the unfavorable catalytic effects of nanozymes in the acidic tumor microenvironment have limited their applications. Herein, we developed a biomimetic erythrocyte membrane-camouflaged ultrasmall black phosphorus quantum dots (BPQDs) nanozymes that simultaneously exhibited an exceptional near-infrared (NIR) photothermal property and dramatically photothermal-enhanced glucose oxidase (GOx)-like activity in the acidic tumor microenvironment. We demonstrated the engineered BPQDs gave a photothermal conversion efficiency of 28.9% that could rapidly heat the tumor up to 50 ℃ while effectively localized into tumors via homing peptide iRGD leading after intravenously injection. Meanwhile, the significantly enhanced GOx-like activity of BPQDs under NIR irradiation was capable of catalytical generating massive toxic reactive oxygen species via using cellular glucose. By combining the intrinsic photothermal property and the unique photothermal-enhanced GOx-like catalytic activity, the developed BPQDs were demonstrated to be an effective therapeutic strategy for inhibiting tumor growth in vivo. We believe that this work will provide a novel perspective for the development of nanozymes in tumor catalytic therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Black phosphorus quantum dots as multifunctional nanozymes for tumor photothermal/catalytic synergistic therapy

Show Author's information Hui Ding1,3Daji Wang1,3Haibing Huang1Xiaozhu Chen1Jie Wang1Jinjie Sun1Jianlin Zhang2Lu Lu1Beiping Miao1Yanjuan Cai1Kelong Fan3Yongtian Lu1Hongsong Dong1Xiyun Yan3( )Guohui Nie1( )Minmin Liang2( )
Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of OtolaryngologyInstitute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen518035China
Experimental Center of Advanced MaterialsSchool of Materials Science and Engineering, Beijing Institute of TechnologyBeijing100081China
Key Laboratory of Protein and Peptide PharmaceuticalsInstitute of Biophysics, Chinese Academy of SciencesBeijing100101China

Abstract

Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their high stability, easy preparation, and tunable catalytic properties, especially in the field of cancer therapy. However, the unfavorable catalytic effects of nanozymes in the acidic tumor microenvironment have limited their applications. Herein, we developed a biomimetic erythrocyte membrane-camouflaged ultrasmall black phosphorus quantum dots (BPQDs) nanozymes that simultaneously exhibited an exceptional near-infrared (NIR) photothermal property and dramatically photothermal-enhanced glucose oxidase (GOx)-like activity in the acidic tumor microenvironment. We demonstrated the engineered BPQDs gave a photothermal conversion efficiency of 28.9% that could rapidly heat the tumor up to 50 ℃ while effectively localized into tumors via homing peptide iRGD leading after intravenously injection. Meanwhile, the significantly enhanced GOx-like activity of BPQDs under NIR irradiation was capable of catalytical generating massive toxic reactive oxygen species via using cellular glucose. By combining the intrinsic photothermal property and the unique photothermal-enhanced GOx-like catalytic activity, the developed BPQDs were demonstrated to be an effective therapeutic strategy for inhibiting tumor growth in vivo. We believe that this work will provide a novel perspective for the development of nanozymes in tumor catalytic therapy.

Keywords: nanozymes, black phosphorus quantum dots, glucose oxidase-like activity, photothermal/catalytic synergistic therapy

References(36)

1

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. P.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (Ⅱ). Chem. Soc. Rev. 2019, 48, 1004-1076.

2

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357-4412.

3

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase- like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577-583.

4

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190-2200.

5

Cormode, D. P.; Gao, L. Z.; Koo, H. Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends Biotechnol. 2018, 36, 15-29.

6

Song, W.; Zhao, B.; Wang, C.; Ozaki, Y.; Lu, X. F. Functional nanomaterials with unique enzyme-like characteristics for sensing applications. J. Mater. Chem. B 2019, 7, 850-875.

7

Lin, H.; Chen, Y.; Shi, J. L. Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. Chem. Soc. Rev. 2018, 47, 1938-1958.

8

Munir, S.; Shah, A. A.; Rahman, H.; Bilal, M.; Rajoka, M. S. R.; Khan, A. A.; Khurshid, M. Nanozymes for medical biotechnology and its potential applications in biosensing and nanotherapeutics. Biotechnol. Lett. 2020, 42, 357-373.

9

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440-1451.

10

Zhu, P.; Chen, Y.; Shi, J. L. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. ACS Nano 2018, 12, 3780-3795.

11

Korschelt, K.; Tahir, M. N.; Tremel, W. A step into the future: Applications of nanoparticle enzyme mimics. Chem. Eur. J. 2018, 24, 9703-9713.

12

Huo, M. F.; Wang, L. Y.; Wang, Y. W.; Chen, Y.; Shi, J. L. Nanocatalytic tumor therapy by single-atom catalysts. ACS Nano 2019, 13, 2643-2653.

13

Wang, Z. Z.; Zhang, Y.; Ju, E. G.; Liu, Z.; Cao, F. F.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors. Nat. Commun. 2018, 9, 3334.

14

Fan, L.; Xu, X. D.; Zhu, C. H.; Han, J.; Gao, L. Z.; Xi, J. Q.; Guo, R. Tumor catalytic-photothermal therapy with yolk-shell gold@carbon nanozymes. ACS Appl. Mater. Interfaces 2018, 10, 4502-4511.

15

Robinson, J. T.; Tabakman, S. M.; Liang, Y. Y.; Wang, H. L.; Casalongue, H. S.; Vinh, D.; Dai, H. J. Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 2011, 133, 6825-6831.

16

Ding, P. H.; Di, J.; Chen, X. L.; Ji, M. X.; Gu, K. Z.; Yin, S.; Liu, G. P.; Zhang, F.; Xia, J. X.; Li, H. M. S, N codoped graphene quantum dots embedded in (BiO)2CO3: Incorporating enzymatic-like catalysis in photocatalysis. ACS Sustainable Chem. Eng. 2018, 6, 10229-10240.

17

Zhang, X.; Xie, H. M.; Liu, Z. D.; Tan, C. L.; Luo, Z. M.; Li, H.; Lin, J. D.; Sun, L. Q.; Chen, W.; Xu, Z. C. et al. Black phosphorus quantum dots. Angew. Chem., Int. Ed. 2015, 54, 3653-3657.

18

Mu, X. Y.; Wang, J. Y.; Bai, X. T.; Xu, F. J.; Liu, H. X.; Yang, J.; Jing, Y. Q.; Liu, L. F.; Xue, X. H.; Dai, H. T. et al. Black phosphorus quantum dot induced oxidative stress and toxicity in living cells and mice. ACS Appl. Mater. Interfaces 2017, 9, 20399-20409.

19

Gui, R. J.; Jin, H.; Wang, Z. H.; Li, J. H. Black phosphorus quantum dots: Synthesis, properties, functionalized modification and applications. Chem. Soc. Rev. 2018, 47, 6795-6823.

20

Zeng, X. W.; Luo, M. M.; Liu, G.; Wang, X. S.; Tao, W.; Lin, Y. X.; Ji, X. Y.; Nie, L.; Mei, L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal performance for tumor multimodal treatments. Adv. Sci. 2018, 5, 1800510.

21

Sun, Z. B.; Xie, H. H.; Tang, S. Y.; Yu, X. F.; Guo, Z. N.; Shao, J. D.; Zhang, H.; Huang, H.; Wang, H. Y.; Chu, P. K. Ultrasmall black phosphorus quantum dots: Synthesis and use as photothermal agents. Angew. Chem., Int. Ed. 2015, 54, 11526-11530.

22

Hu, Y. H.; Cheng, H. J.; Zhao, X. Z.; Wu, J. J. X.; Muhammad, F.; Lin, S. C.; He, J.; Zhou, L. Q.; Zhang, C. P.; Deng, Y. et al. Surface-enhanced Raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558-5566.

23

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

24

Ni, D. Z.; Ding, H.; Liu, S.; Yue, H.; Bao, Y. L.; Wang, Z. H.; Su, Z. G.; Wei, W.; Ma, G. H. Superior intratumoral penetration of paclitaxel nanodots strengthens tumor restriction and metastasis prevention. Small 2015, 11, 2518-2526.

25

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636-3641.

26

Hu, C. M. J.; Zhang, L.; Aryal, S.; Cheung, C.; Fang, R. H.; Zhang, L. F. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl. Acad. Sci. USA 2011, 108, 10980-10985.

27

Ding, H.; Cai, Y. J.; Gao, L. Z.; Liang, M. M.; Miao, B. P.; Wu, H. W.; Liu, Y.; Xie, N.; Tang, A. F.; Fan, K. L. et al. Exosome-like nanozyme vesicles for H2O2-responsive catalytic photoacoustic imaging of xenograft nasopharyngeal carcinoma. Nano Lett. 2019, 19, 203-209.

28

Waite, C. L.; Roth, C. M. Nanoscale drug delivery systems for enhanced drug penetration into solid tumors: Current progress and opportunities. Crit. Rev. Biomed. Eng. 2012, 40, 21-41.

29

Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 2010, 328, 1031-1035.

30

Peng, Z. H.; Kopeček, J. Enhancing accumulation and penetration of HPMA copolymer-doxorubicin conjugates in 2D and 3D prostate cancer cells via iRGD conjugation with an MMP-2 cleavable spacer. J. Am. Chem. Soc. 2015, 137, 6726-6729.

31

Ni, D. Z.; Ding, H.; Liu, S.; Yue, H.; Bao, Y. L.; Wang, Z. H.; Su, Z. G.; Wei, W.; Ma, G. H. Superior intratumoral penetration of paclitaxel nanodots strengthens tumor restriction and metastasis prevention. Small 2015, 11, 2518-2526.

32

Ding, H.; Zhang, F.; Zhao, C. C.; Lv, Y. L.; Ma, G. H.; Wei, W.; Tian, Z. Y. Beyond a carrier: Graphene quantum dots as a probe for programmatically monitoring anti-cancer drug delivery, release, and response. ACS Appl. Mater. Interfaces 2017, 9, 27396-27401.

33

Ding, H.; Lv, Y. L.; Ni, D. Z.; Wang, J.; Tian, Z. Y.; Wei, W.; Ma, G. H. Erythrocyte membrane-coated NIR-triggered biomimetic nanovectors with programmed delivery for photodynamic therapy of cancer. Nanoscale 2015, 7, 9806-9815.

34

Yang, Y.; Zhu, W. J.; Dong, Z. L.; Chao, Y.; Xu, L.; Chen, M. W.; Liu, Z. 1D coordination polymer nanofibers for low-temperature photothermal therapy. Adv. Mater. 2017, 29, 1703588.

35

Yang, Y. C.; He, P.; Wang, Y. X.; Bai, H. T.; Wang, S.; Xu, J. F.; Zhang, X. Supramolecular radical anions triggered by bacteria in situ for selective photothermal therapy. Angew. Chem., Int. Ed. 2017, 56, 16239-16242.

36

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318-3323.

File
12274_2021_3701_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 March 2021
Revised: 10 June 2021
Accepted: 20 June 2021
Published: 11 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2020YFC1316900 and 2020YFC1316901), China Postdoctoral Science Foundation (Nos. 2019T120754 and 2018M633229), Sanming Project of Medicine in Shenzhen (No. SZSM201612031), National Natural Science Foundation of China (Nos. 82003303 and 81722024), National Key R & D Program of China (No. 2017YFA0205501), Natural Science Foundation of Guangdong Province of China (Nos. 2018A030310665 and 2018A0303130295), Shenzhen Science and Technology Innovation Committee (Nos. JSGG20191129144225464, JCYJ20190806163814395, ZDSYS201707281114196, JCYJ20170306091657539, JCYJ20170413162242627, JCYJ20170306091452714, and GJHZ20170313172439851), Development and Reform Commission of Shenzhen Municipality (No. S2016005470013). The animal study protocol was approved by the Institutional Animal Care and Use Committee at Shenzhen University.

Return