Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Appropriate surface modification or functionalization is prerequisite for the application of inorganic nanoparticles. And surface control between organic and inorganic interface plays an important role in constructing organic–inorganic composites. In-situ polymerization has been extensively studied to improve the compatibility and dispersibility of inorganic nanoparticles, but the polymerized nanoparticles tend to concatenate and form large composites, restricting further applications. Herein, uniform and dense polyacrylic acid (PAA) membranes have been grafted on layered double hydroxide (LDH) nanosheets via an in-situ initiating and terminating radical graft polymerization method. With initiating and terminating on the same particle, the size, morphology and density of grafted PAA onto the surface of LDHs can be controlled by adjusting the ratio of initiated sites to terminated sites, the amount of redox initiator or monomer. As a result, with only 17.33% organic grafting ratio, PAA@LDHs with largely improved compatibility can be monodispersed in polyethylene (PE) and polyvinyl chloride (PVC) matrices, which is determined by a fluorescence microscope technique.
Guo, Y. Q.; Xu, K.; Wu, C. Z.; Zhao, J. Y.; Xie, Y. Surface chemical- modification for engineering the intrinsic physical properties of inorganic two-dimensional nanomaterials. Chem. Soc. Rev. 2015, 44, 637-646.
Nam, J.; Won, N.; Bang, J.; Jin H.; Park J.; Jung S.; Jung S.; Park Y.; Kim S. Surface engineering of inorganic nanoparticles for imaging and therapy. Adv. Drug Deliver. Rev. 2013, 65, 622-648.
Zhang, X. S.; Chen, Y. J.; Lian, L. Y.; Zhang, Z. Z.; Liu, Y. X.; Song, L.; Geng, C.; Zhang, J. B.; Xu, S. Stability enhancement of PbS quantum dots by site-selective surface passivation for near-infrared LED application. Nano Res. 2021, 14, 628-634.
Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability. Adv. Mater. Interfaces 2018, 5, 1701662.
Ajayan, P. M.; Schadler, L. S.; Braun, P. V. Nanocomposite Science and Technology; Wiley VCH Verlag: Weinheim, 2003.
Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, 6, 278-282.
Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y. F.; Mishra, R. K.; Marchon, D.; Flatt, R. J.; Estrela-Lopis, I.; Llop, J.; Moya, S. et al. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep. 2017, 72, 1-58.
Estroff, L. A.; Hamilton, A. D. At the interface of organic and inorganic chemistry: Bioinspired synthesis of composite materials. Chem. Mater. 2001, 13, 3227-3235.
Shen, J. N.; Ruan, H. M.; Wu, L. G.; Gao, C. J. Preparation and characterization of PES-SiO2 organic-inorganic composite ultrafiltration membrane for raw water pretreatment. Chem. Eng. J. 2011, 168, 1272-1278.
Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232-1261.
Chandran, S.; Begam, N.; Padmanabhan, V.; Basu, J. K. Confinement enhances dispersion in nanoparticle-polymer blend films. Nat. Commun. 2014, 5, 3697.
Suter, J. L.; Groen, D.; Coveney, P. V. Chemically specific multiscale modeling of clay-polymer nanocomposites reveals intercalation dynamics, tactoid self-assembly and emergent materials properties. Adv. Mater. 2015, 27, 966-984.
Queffélec, C.; Petit, M.; Janvier, P.; Knight, D. A.; Bujoli, B. Surface modification using phosphonic acids and esters. Chem. Rev. 2012, 112, 3777-3807.
Das, S.; Wajid, A. S.; Shelburne, J. L.; Liao, Y. C.; Green, M. J. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions. ACS Appl. Mater. Interfaces 2011, 3, 1844-1851.
Mylvaganam, K.; Zhang, L. C. In situ polymerization on graphene surfaces. J. Phys. Chem. C 2013, 117, 2817-2823.
Wu, C.; Wang, X. D.; Zhang, J. Y.; Cheng, J.; Shi, L. Microencapsulation and surface functionalization of ammonium polyphosphate via in-situ polymerization and thiol-ene photograted reaction for application in flame-retardant natural rubber. Ind. Eng. Chem. Res. 2019, 58, 17346-17358.
Lin, C.; Lü, T.; Qi, D. M.; Cao, Z. H.; Sun, Y. Y.; Wang, Y. T. Effects of surface groups on SiO2 nanoparticles on in situ solution polymerization: Kinetics and mechanism. Ind. Eng. Chem. Res. 2018, 57, 15280-15290.
Zhou, Y.; Wang, S. X.; Ding, B. J.; Yang, Z. M. Modification of magnetite nanoparticles via surface-initiated atom transfer radical polymerization (ATRP). Chem. Eng. J. 2008, 138, 578-585.
Rong, M. Z.; Zhang, M. Q.; Wang, H. B.; Zeng, H. M. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization. Appl. Surf. Sci. 2002, 200, 76-93.
Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124-4155.
Xu, M.; Wei, M. Layered double hydroxide-based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018, 28, 1802943.
Kong, X. G.; Ge, R. X.; Liu, T.; Xu, S. M.; Hao, P. P.; Zhao, X. J.; Li, Z. H.; Lei, X. D.; Duan, H. H. Super-stable mineralization of cadmium by calcium-aluminum layered double hydroxide and its large-scale application in agriculture soil remediation. Chem. Eng. J. 2021, 407, 127178.
Gao, R.; Yan, D. P. Layered host-guest long-afterglow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chem. Sci. 2017, 8, 590-599.
Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883-1894.
Gao, R.; Yan, D. P. Ordered assembly of hybrid room-temperature phosphorescence thin films showing polarized emission and the sensing of VOCs. Chem. Commun. 2017, 53, 5408-5411.
Evans, D. G.; Duan, X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine. Chem. Commun. 2006, 485-496.
Gao, Y. S.; Wu, J. W.; Wang, Q.; Wilkie, C. A.; O'Hare, D. Flame retardant polymer/layered double hydroxide nanocomposites. J. Mater. Chem. A 2014, 2, 10996-11016.
Kang, N. J.; Wang, D. Y.; Kutlu, B.; Zhao, P. C.; Leuteritz, A.; Wagenknecht, U.; Heinrich, G. A new approach to reducing the flammability of layered double hydroxide (LDH)-based polymer composites: Preparation and characterization of dye structure- intercalated LDH and its effect on the flammability of polypropylene- grafted maleic anhydride/d-LDH composites. ACS Appl. Mater. Interfaces 2013, 5, 8991-8997.
Nyambo, C.; Wang, D. Y.; Wilkie, C. A. Will layered double hydroxides give nanocomposites with polar or non-polar polymers? Polym. Adv. Technol. 2009, 20, 332-340.
Zhao, Y.; Yang, W. D.; Xue, Y. H.; Wang, X. G.; Lin, T. Partial exfoliation of layered double hydroxides in DMSO: A route to transparent polymer nanocomposites. J. Mater. Chem. 2011, 21, 4869-4847.
Gu, Z.; Atherton, J. J.; Xu, Z. P. Hierarchical layered double hydroxide nanocomposites: Structure, synthesis and applications. Chem. Commun. 2015, 51, 3024-3036.
Hu, Z. Q.; Chen, G. M. Novel nanocomposite hydrogels consisting of layered double hydroxide with ultrahigh tensibility and hierarchical porous structure at low inorganic content. Adv. Mater. 2014, 26, 5950-5956.
Gao, R.; Yan, D. P.; Evans, D. G.; Duan, X. Layer-by-layer assembly of long-afterglow self-supporting thin films with dual-stimuli- responsive phosphorescence and antiforgery applications. Nano Res. 2017, 10, 3606-3617.
Wang, C. X.; Mao, H. Y.; Wang, C. X.; Fu, S. H. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind. Eng. Chem. Res. 2011, 50, 11930- 11934.
Yue, X. J.; Zhang, T.; Yang, D. Y.; Qiu, F. X.; Li, Z. D.; Zhu, Y.; Yu, H. Q. Oil removal from oily water by a low-cost and durable flexible membrane made of layered double hydroxide nanosheet on cellulose support. J. Clean. Prod. 2018, 180, 307-315.
Jiang, J.; Zhang, Y.; Zheng, Y.; Jiang, P. Transesterification of soybean oil with ethylene glycol, catalyzed by modified Li-Al layered double hydroxides. Chem. Eng. Technol. 2013, 36, 1371-1377.
Wang, H. B.; Chen, E. Y.; Jia, X. B.; Liang, L. J.; Wang, Q. Superhydrophobic coatings fabricated with polytetrafluoroethylene and SiO2 nanoparticles by spraying process on carbon steel surfaces. Appl. Surf. Sci. 2015, 349, 724-732.
Liu, R. R.; Zhang, P.; Dai, H. L. Synthesis of magnetic particles with well-defined living polymeric chains via combination of RAFT polymerization and thiol-ene click chemistry. J. Polym. Res. 2016, 23, 218.
Rong, M. Z.; Ji, Q. L.; Zhang, M. Q.; Friedrich, K. Graft polymerization of vinyl monomers onto nanosized alumina particles. Eur. Polym. J. 2002, 38, 1573-1582.
Ribelli, T. G.; Augustine, K. F.; Fantin, M.; Krys, P.; Poli, R.; Matyjaszewski, K. Disproportionation or combination? the termination of acrylate radicals in ATRP. Macromolecules 2017, 50, 7920-7929.
Nair, V.; Deepthi, A. Cerium(Ⅳ) ammonium nitrate-a versatile single- electron oxidant. Chem. Rev. 2007, 107, 1862-1891.
Guan, W. J.; Wang, S.; Lu, C.; Tang, B. Z. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites. Nat. Commun. 2016, 7, 11811.