Journal Home > Volume 15 , Issue 2

As a weak non-covalent interaction, hydrogen bond (H-bond) is highly susceptible to the environmental interference. However, the direct quantification of a single H-bond under an interference-free condition is still a challenge. Herein, the intramolecular H-bond in a model system, poly(N-isopropylacrylamide), is studied in high vacuum by single-molecule atomic force microscopy and steered molecular dynamics simulations, which allows the precise quantification of H-bond strength in an interference-free state. Control experiments show that the H-bond is significantly weakened in nonpolar solvent, even if the dielectric constant is very close to vacuum. If a polar solvent is used as the environment, the H-bond will be further weaker or even broken. These results imply that for experiments in any liquid environment, the H-bond strength (ΔG) will be only ~ 50% or even less of that measured in vacuum. Further analysis shows that in liquid environments, ΔG decays in a quasi-linear way with the increase of the dielectric constant (ε). For H-bond studies in future, the result measured in vacuum can be set as the standard value, namely, the inherent strength. This approach will provide fundamental insights into the H-bond participated nano-structures and materials in different environments.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Intramolecular hydrogen bonds in a single macromolecule: Strength in high vacuum versus liquid environments

Show Author's information Wanhao Cai1Duo Xu2Fa Zhang1Junhao Wei1Song Lu1Linmao Qian1Zhongyuan Lu2Shuxun Cui1( )
Key Laboratory of Advanced Technologies of Materials (Ministry of Education)Southwest Jiaotong UniversityChengdu610031China
State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical ChemistryJilin UniversityChangchun130023China

Abstract

As a weak non-covalent interaction, hydrogen bond (H-bond) is highly susceptible to the environmental interference. However, the direct quantification of a single H-bond under an interference-free condition is still a challenge. Herein, the intramolecular H-bond in a model system, poly(N-isopropylacrylamide), is studied in high vacuum by single-molecule atomic force microscopy and steered molecular dynamics simulations, which allows the precise quantification of H-bond strength in an interference-free state. Control experiments show that the H-bond is significantly weakened in nonpolar solvent, even if the dielectric constant is very close to vacuum. If a polar solvent is used as the environment, the H-bond will be further weaker or even broken. These results imply that for experiments in any liquid environment, the H-bond strength (ΔG) will be only ~ 50% or even less of that measured in vacuum. Further analysis shows that in liquid environments, ΔG decays in a quasi-linear way with the increase of the dielectric constant (ε). For H-bond studies in future, the result measured in vacuum can be set as the standard value, namely, the inherent strength. This approach will provide fundamental insights into the H-bond participated nano-structures and materials in different environments.

Keywords: atomic force microscopy, vacuum, single-molecule studies, simulations, hydrogen bond, polymer elasticity

References(66)

1

Sherrington, D. C.; Taskinen, K. A. Self-assembly in synthetic macromolecular systems via multiple hydrogen bonding interactions. Chem. Soc. Rev. 2001, 30, 83-93.

2

Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 1997, 278, 1601-1604.

3

Bandyopadhyay, S.; Chakraborty, S.; Bagchi, B. Secondary structure sensitivity of hydrogen bond lifetime dynamics in the protein hydration layer. J. Am. Chem. Soc. 2005, 127, 16660-16667.

4

Lutz, H. D. Structure and strength of hydrogen bonds in inorganic solids. J. Mol. Struct. 2003, 646, 227-236.

5

Arbely, E.; Arkin, I. T. Experimental measurement of the strength of a C α-H···O bond in a lipid bilayer. J. Am. Chem. Soc. 2004, 126, 5362-5363.

6

Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. Sequence-dependent mechanics of single DNA molecules. Nat. Struct. Mol. Biol. 1999, 6, 346-349.

7

Zou, S.; Schönherr, H.; Vancso, G. J. Force spectroscopy of quadruple h-bonded dimers by AFM: Dynamic bond rupture and molecular time-temperature superposition. J. Am. Chem. Soc. 2005, 127, 11230- 11231.

8

Deshmukh, M. M.; Gadre, S. R. Estimation of N-H···O=C intramolecular hydrogen bond energy in polypeptides. J. Phys. Chem. A 2009, 113, 7927-7932.

9

Steiner, T. The hydrogen bond in the solid state. Angew. Chem., Int. Ed. 2002, 41, 48-76.

DOI
10

Kawai, S.; Nishiuchi, T.; Kodama, T.; Spijker, P.; Pawlak, R.; Meier, T.; Tracey, J.; Kubo, T.; Meyer, E.; Foster, A. S. Direct quantitative measurement of the C=O···H-C bond by atomic force microscopy. Sci. Adv. 2017, 3, e1603258.

11

Rief, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 1997, 275, 1295-1297.

12

Li, H. B.; Linke, W. A.; Oberhauser, A. F.; Carrion-Vazquez, M.; Kerkvliet, J. G.; Lu, H.; Marszalek, P. E.; Fernandez, J. M. Reverse engineering of the giant muscle protein titin. Nature 2002, 418, 998-1002.

13

Bull, M. S.; Sullan, R. M. A.; Li, H. B.; Perkins, T. T. Improved single molecule force spectroscopy using micromachined cantilevers. ACS Nano 2014, 8, 4984-4995.

14

Li, H. B.; Cao, Y. Protein mechanics: From single molecules to functional biomaterials. Acc. Chem. Res. 2010, 43, 1331-1341.

15

Li, I. T.; Walker, G. C. Interfacial free energy governs single polystyrene chain collapse in water and aqueous solutions. J. Am. Chem. Soc. 2010, 132, 6530-6540.

16

Kolberg, A.; Wenzel, C.; Hackenstrass, K.; Schwarzl, R.; Rüttiger, C.; Hugel, T.; Gallei, M.; Netz, R. R.; Balzer, B. N. Opposing temperature dependence of the stretching response of single PEG and PNiPAM polymers. J. Am. Chem. Soc. 2019, 141, 11603-11613.

17

Wang, J. P.; Kouznetsova, T. B.; Boulatov, R.; Craig, S. L. Mechanical gating of a mechanochemical reaction cascade. Nat. Commun. 2016, 7, 13433.

18

Cui, S. X.; Albrecht, C.; Kühner, F.; Gaub, H. E. Weakly bound water molecules shorten single-stranded DNA. J. Am. Chem. Soc. 2006, 128, 6636-6639.

19

Cai, W. H.; Xu, D.; Qian, L.; Wei, J. H.; Xiao, C.; Qian, L. M.; Lu, Z. Y.; Cui, S. X. Force-induced transition of π-π stacking in a single polystyrene chain. J. Am. Chem. Soc. 2019, 141, 9500-9503.

20

Chung, J.; Kushner, A. M.; Weisman, A. C.; Guan, Z. B. Direct correlation of single-molecule properties with bulk mechanical performance for the biomimetic design of polymers. Nat. Mater. 2014, 13, 1055-1062.

21

Yang, P.; Song, Y.; Feng, W.; Zhang, W. K. Unfolding of a single polymer chain from the single crystal by air-phase single-molecule force spectroscopy: Toward better force precision and more accurate description of molecular behaviors. Macromolecules 2018, 51, 7052-7060.

22

Luo, Z. L.; Zhang, A. F.; Chen, Y. M.; Shen, Z. H.; Cui, S. X. How big is big enough? Effect of length and shape of side chains on the single-chain enthalpic elasticity of a macromolecule. Macromolecules 2016, 49, 3559-3565.

23

Radiom, M.; Maroni, P.; Borkovec, M. Influence of solvent quality on the force response of individual poly(styrene) polymer chains. ACS Macro Lett. 2017, 6, 1052-1055.

24

Zhao, P.; Xu, C. Q.; Sun, C. X.; Xia, J. H.; Sun, L.; Li, J.; Xu, H. P. Exploring the difference of bonding strength between silver (i) and chalcogenides in block copolymer systems. Polym. Chem. 2020, 11, 7087-7093.

25

Wu, X.; Huang, W. M.; Wu, W. H.; Xue, B.; Xiang, D. F.; Li, Y.; Qin, M.; Sun, F.; Wang, W.; Zhang, W. B. et al. Reversible hydrogels with tunable mechanical properties for optically controlling cell migration. Nano Res. 2018, 11, 5556-5565.

26

Cai, W. H.; Lu, S.; Wei, J. H.; Cui, S. X. Single-chain polymer models incorporating the effects of side groups: An approach to general polymer models. Macromolecules 2019, 52, 7324-7330.

27

Wang, K. F.; Pang, X. C.; Cui, S. X. Inherent stretching elasticity of a single polymer chain with a carbon-carbon backbone. Langmuir 2013, 29, 4315-4319.

28

Cai, W. H.; Xiao, C.; Qian, L. M.; Cui, S. X. Detecting van der waals forces between a single polymer repeating unit and a solid surface in high vacuum. Nano Res. 2019, 12, 57-61.

29

Cheng, H.; Shen, L.; Wu, C. Lls and ftir studies on the hysteresis in association and dissociation of poly(N-isopropylacrylamide) chains in water. Macromolecules 2006, 39, 2325-2329.

30

Hugel, T.; Seitz, M. The study of molecular interactions by AFM force spectroscopy. Macromol. Rapid Commun. 2001, 22, 989-1016.

DOI
31

Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008, 4, 435-447.

32

Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and testing of the opls all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225-11236.

33

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511-519.

34

Parrinello, M.; Rahman, A. Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 1981, 52, 7182-7190.

35

Darden, T.; York, D.; Pedersen, L. Particle mesh ewald: An N·log(N) method for ewald sums in large systems. J. Chem. Phys. 1993, 98, 10089-10092.

36

Arteca, G. A. Stress-induced shape transitions in polymers using a new approach to steered molecular dynamics. Phys. Chem. Chem. Phys. 2003, 5, 407-414.

37

Zhang, Q. M.; Jaroniec, J.; Lee, G.; Marszalek, P. E. Direct detection of inter-residue hydrogen bonds in polysaccharides by single-molecule force spectroscopy. Angew. Chem., Int. Ed. 2005, 44, 2723-2727.

38

Barclay, T. G.; Rajapaksha, H.; Thilagam, A.; Qian, G. J.; Ginic- Markovic, M.; Cooper, P. D.; Gerson, A.; Petrovsky, N. Physical characterization and in silico modeling of inulin polymer conformation during vaccine adjuvant particle formation. Carbohyd. Polym. 2016, 143, 108-115.

39

Musgaard, M.; Biggin, P. C. Steered molecular dynamics simulations predict conformational stability of glutamate receptors. J. Chem. Inf. Model. 2016, 56, 1787-1797.

40

van Buul, A. M.; Schwartz, E.; Brocorens, P.; Koepf, M.; Beljonne, D.; Maan, J. C.; Christianen, P. C. M.; Kouwer, P. H. J.; Nolte, R. J. M.; Engelkamp, H. et al. Stiffness versus architecture of single helical polyisocyanopeptides. Chem. Sci. 2013, 4, 2357-2363.

41

Feng, W.; Wang, Z. G.; Zhang, W. K. Effect of chain conformation on the single-molecule melting force in polymer single crystals: Steered molecular dynamics simulations study. Langmuir 2017, 33, 1826-1833.

42

Ozer, G.; Quirk, S.; Hernandez, R. Thermodynamics of decaalanine stretching in water obtained by adaptive steered molecular dynamics simulations. J. Chem. Theory Comput. 2012, 8, 4837-4844.

43

Sheridan, S.; Gräter, F.; Daday, C. How fast is too fast in force-probe molecular dynamics simulations? J. Phys. Chem. B 2019, 123, 3658-3664.

44

Luzar, A.; Chandler, D. Structure and hydrogen bond dynamics of water-dimethyl sulfoxide mixtures by computer simulations. J. Chem. Phys. 1993, 98, 8160-8173.

45

Katsumoto, Y.; Tanaka, T.; Ihara, K.; Koyama, M.; Ozaki, Y. Contribution of intramolecular C=O···H-N hydrogen bonding to the solvent-induced reentrant phase separation of poly(N- isopropylacrylamide). J. Phys. Chem. B 2007, 111, 12730-12737.

46

Yamauchi, H.; Maeda, Y. LCST and UCST behavior of poly(N- isopropylacrylamide) in DMSO/water mixed solvents studied by IR and micro-Raman spectroscopy. J. Phys. Chem. B 2007, 111, 12964-12968.

47

Cui, S. X.; Liu, C. J.; Wang, Z. Q.; Zhang, X.; Strandman, S.; Tenhu, H. Single molecule force spectroscopy on polyelectrolytes: Effect of spacer on adhesion force and linear charge density on rigidity. Macromolecules 2004, 37, 946-953.

48

Hugel, T.; Rief, M.; Seitz, M.; Gaub, H. E.; Netz, R. R. Highly stretched single polymers: Atomic-force-microscope experiments versus ab-initio theory. Phys. Rev. Lett. 2005, 94, 048301.

49

Saleh, O. A.; McIntosh, D. B.; Pincus, P.; Ribeck, N. Nonlinear low- force elasticity of single-stranded DNA molecules. Phys. Rev. Lett. 2009, 102, 068301.

50

Livadaru, L.; Netz, R.; Kreuzer, H. J. Stretching response of discrete semiflexible polymers. Macromolecules 2003, 36, 3732-3744.

51

Cui, S. X.; Yu, Y.; Lin, Z. B. Modeling single chain elasticity of single-stranded DNA: A comparison of three models. Polymer 2009, 50, 930-935.

52

Kühner, F.; Gaub, H. E. Modelling cantilever-based force spectroscopy with polymers. Polymer 2006, 47, 2555-2563.

53

Zhou, K. J.; Lu, Y. J.; Li, J. F.; Shen, L.; Zhang, G. Z.; Xie, Z. W.; Wu, C. The coil-to-globule-to-coil transition of linear polymer chains in dilute aqueous solutions: Effect of intrachain hydrogen bonding. Macromolecules 2008, 41, 8927-8931.

54

Xue, Z. Q.; Liu, W. M.; Gao, H. J.; Zhu, C.; Ma, Z.; Pang, S. J. Polyethylene crystal lamella growth on the mica. J. Vac. Sci. Technol. A 1992, 10, 627-629.

55

Ben-Tal, N.; Sitkoff, D.; Topol, I. A.; Yang, A. S.; Burt, S. K.; Honig, B. Free energy of amide hydrogen bond formation in vacuum, in water, and in liquid alkane solution. J. Phys. Chem. B 1997, 101, 450-457.

56

McIntosh, D. B.; Duggan, G.; Gouil, Q.; Saleh, O. A. Sequence- dependent elasticity and electrostatics of single-stranded DNA: Signatures of base-stacking. Biophys. J. 2014, 106, 659-666.

57

Bruce, E. E.; Bui, P. T.; Rogers, B. A.; Cremer, P. S.; van der Vegt, N. F. A. Nonadditive ion effects drive both collapse and swelling of thermoresponsive polymers in water. J. Am. Chem. Soc. 2019, 141, 6609-6616.

58

Lohikoski, R.; Timonen, J.; Laaksonen, A. Molecular dynamics simulation of single DNA stretching reveals a novel structure. Chem. Phys. Lett. 2005, 407, 23-29.

59

Kanduč, M.; Chudoba, R.; Palczynski, K.; Kim, W. K.; Roa, R.; Dzubiella, J. Selective solute adsorption and partitioning around single pnipam chains. Phys. Chem. Chem. Phys. 2017, 19, 5906-5916.

60

Da, L. T.; E, C.; Shuai, Y.; Wu, S. G.; Su, X. D.; Yu, J. T7 RNA polymerase translocation is facilitated by a helix opening on the fingers domain that may also prevent backtracking. Nucleic Acids Res. 2017, 45, 7909-7921.

61

Evans, E. Probing the relation between force-lifetime-and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 2001, 30, 105-128.

62

Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol. Chem. Phys. 2001, 266, 137-147.

63

Kang, Y. K. Which functional form is appropriate for hydrogen bond of amides? J. Phys. Chem. B 2000, 104, 8321-8326.

64

Kobko, N.; Paraskevas, L.; del Rio, E.; Dannenberg, J. J. Cooperativity in amide hydrogen bonding chains: Implications for protein-folding models. J. Am. Chem. Soc. 2001, 123, 4348-4349.

65

Koyama, M.; Hirano, T.; Ohno, K.; Katsumoto, Y. Molecular understanding of the UCST-type phase separation behavior of a stereocontrolled poly(N-isopropylacrylamide) in bis(2-methoxyethyl) ether. J. Phys. Chem. B 2008, 112, 10854-10860.

66

Luo, Z. L.; Zhang, B.; Qian, H. J.; Lu, Z. Y.; Cui, S. X. Effect of the size of solvent molecules on the single-chain mechanics of poly(ethylene glycol): Implications on a novel design of a molecular motor. Nanoscale 2016, 8, 17820-17827.

File
12274_2021_3696_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 May 2021
Revised: 12 June 2021
Accepted: 16 June 2021
Published: 10 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21774102).

Return