Journal Home > Volume 15 , Issue 2

Single-atom site (SAS) catalysts have attracted considerable attention due to their excellent performance. However, most of the current research models of SAS catalysts are based on inorganic catalysts, where "metal and coordination atom interaction" cannot simulate the fine-tuning effect of organic ligands on metal catalytic centers in homogeneous catalysts. Therefore, certain chemical transformations in homogeneous catalysis cannot be perfectly replicated. Here, we used porous organic ligand polymers as the carrier, which effectively changes the charge regulation of nanoparticles and monoatomic metal catalysts. Drawing lessons from traditional homogeneous metal/ligand catalysis, we introduced various functional groups into the ligand polymers to adjust the electronic properties, and successfully realized the hydrosilylation of internal alkynes with high catalytic performance. The selectivity and catalytic efficiency under the Pd@POL-1 catalyst system were improved compared with previous studies. The internal alkynes with various structures can complete this reaction, and the ratio of E/Z can reach up to 100:1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Well-defined coordination environment breaks the bottleneck of organic synthesis: Single-atom palladium catalyzed hydrosilylation of internal alkynes

Show Author's information Shicheng RenBochao YeSiying LiLiping PangYingming PanHaitao Tang( )
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources School of Chemistry and Pharmaceutical Sciences Guangxi Normal UniversityGuilin 541004 China

Abstract

Single-atom site (SAS) catalysts have attracted considerable attention due to their excellent performance. However, most of the current research models of SAS catalysts are based on inorganic catalysts, where "metal and coordination atom interaction" cannot simulate the fine-tuning effect of organic ligands on metal catalytic centers in homogeneous catalysts. Therefore, certain chemical transformations in homogeneous catalysis cannot be perfectly replicated. Here, we used porous organic ligand polymers as the carrier, which effectively changes the charge regulation of nanoparticles and monoatomic metal catalysts. Drawing lessons from traditional homogeneous metal/ligand catalysis, we introduced various functional groups into the ligand polymers to adjust the electronic properties, and successfully realized the hydrosilylation of internal alkynes with high catalytic performance. The selectivity and catalytic efficiency under the Pd@POL-1 catalyst system were improved compared with previous studies. The internal alkynes with various structures can complete this reaction, and the ratio of E/Z can reach up to 100:1.

Keywords: hydrosilylation, single-atom site catalysts, porous organic ligand polymers, palladium catalysis, internal alkynes

References(56)

1

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang, D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

2

Yang, J.; Wang, X. L.; Qu, Y. T.; Wang, X.; Huo, H.; Fan, Q. K.; Wang, J.; Yang, L. M.; Wu, Y. E. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv. Energy Mater. 2020, 10, 2001709.

3

Hoque, M. A.; Gil-Sepulcre, M.; De Aguirre, A.; Elemans, J. A. A. W.; Moonshiram, D.; Matheu, R.; Shi, Y. Y.; Benet-Buchholz, J.; Sala, X.; Malfois, M. et al. Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nat. Chem. 2020, 12, 1060–1066.

4

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene, Nano Res. 2021, DOI: 10.1007/s12274-020-3244-4.

5

Zhang, Z. D.; Zhou, M.; Chen, Y. J.; Liu, S. J.; Wang, H. F.; Zhang, J.; Ji, S. F.; Wang, D. S.; Li, Y. D. Pd single-atom monolithic catalyst: Functional 3D structure and unique chemical selectivity in hydrogenation reaction. Sci. China Mater. 2021, 14, 2418–2423.

6

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium–sulfur batteries. Nano Res. 2020, 13, 1856–1866.

7

Yang, L.; Liu, Y. T.; Park, Y.; Park, S. W.; Chang, S. Ni-mediated generation of "CN" unit from formamide and its catalysis in the cyanation reactions. ACS Catal. 2019, 9, 3360–3365.

8

Zhao, B. Z.; Li, Y. Q.; Li, H. Y.; Belal, M.; Zhu, L.; Yin, G. Y. Synergistic Ni/Cu catalyzed migratory arylsilylation of terminal olefins. Sci. Bull. 2021, 66, 570–577.

9

Tang, S.; Rauch, M.; Montag, M.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Catalytic oxidative deamination by water with H2 liberation. J. Am. Chem. Soc. 2020, 142, 20875–20882.

10

Millet, M. M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Levchenko, S. V.; Schlögl, R. et al. Ni Single Atom Catalysts for CO2 Activation. J. Am. Chem. Soc. 2019, 141, 2451–2461.

11

Chen, S.; Zhou, Y.; Li, J. Y.; Hu, Z. D.; Dong, F.; Hu, Y. X.; Wang, H. Q.; Wang, L. Z.; Ostrikov, K. K.; Wu Z. B. Single-atom Ru- Implanted metal-organic framework/MnO2 for the highly selective oxidation of NOx by plasma activation. ACS Catal. 2020, 10, 10185–10196.

12

Sarma, B. B.; Kim, J.; Amsler, J.; Agostini, G.; Weidenthaler, C.; Pfänder, N.; Arenal, R.; Concepción, P.; Plessow, P.; Studt, F. et al. One-pot cooperation of single-atom Rh and Ru solid catalysts for a selective tandem olefin isomerization-hydrosilylation process. Angew. Chem., Int. Ed. 2020, 59, 5806–5815.

13

Chen, Z. X.; Liu, C. B.; Liu, J.; Li, J.; Xi, S. B.; Chi, X.; Xu, H. S.; Park, I. H; Peng, X. W.; Li, X. et al. Cobalt single-atom-intercalated molybdenum disulfide for sulfide oxidation with exceptional chemoselectivity. Adv. Mater. 2020, 32, 1906437.

14

Chen, Z. P.; Vorobyeva, E.; Mitchell, S.; Fako, E.; Ortuño, M. A.; López, N.; Collins, S. M.; Midgley, P. A.; Richard, S.; Vilé, G. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotech. 2018, 13, 702–707.

15

Luo, L. H.; Luo, J.; Li, H. L.; Ren, F. N.; Zhang, Y. F.; Liu, A. D.; Li, W. X.; Zeng, J. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat. Commun. 2021, 12, 1218.

16

Li, X. J.; Zhao, S. Y.; Duan, X. G.; Zhang, H. Y.; Yang, S. Z.; Zhang, P. P.; Jiang, S. P.; Liu, S. M.; Sun, H. Q.; Wang, S. B. Coupling hydrothermal and photothermal single-atom catalysis toward excellent water splitting to hydrogen. Appl. Catal. B Environ. 2021, 283, 119660.

17

Liu, K. P., Zhao, X. T., Ren, G. Q.; Yang, T.; Ren, Y. J.; Lee, A. F.; Su, Y.; Pan, X. L.; Zhang, J. C.; Chen, Z. Q. et al. Strong metal- support interaction promoted scalable production of thermally stable single-atom catalysts. Nat. Commun. 2020, 11, 1263.

18

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

19

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

20

Wang, X. Y.; Li, L. L.; Fang, Z. P.; Zhang, Y. F.; Ni, J.; Lin, B. Y.; Zheng, L. R.; Au, C. T.; Jiang, L. L. Atomically dispersed Ru catalyst for low-temperature nitrogen activation to ammonia via an associative mechanism. ACS Catal. 2020, 10, 9504–9514.

21

Li, Z.; Chen, Y. J.; Ji, S. F.; Tang, Y.; Chen, W. X.; Li, A.; Zhao, J.; Xiong, Y.; Wu, Y.; Gong, Y. et al. Iridium single-atom catalyst on nitrogen-doped carbon for formic acid oxidation synthesized using a general host–guest strategy. Nat. Chem. 2020, 12, 764–772.

22

Rebarchik, M.; Bhandari, S.; Kropp, T.; Mavrikakis, M. How noninnocent spectator species improve the oxygen reduction activity of single-atom catalysts: Microkinetic models from first-principles calculations. ACS Catal. 2020, 10, 9129–9135.

23

Wang, H.; Liu, J. X.; Allard, L. F.; Lee, S.; Liu, J. L.; Li, H.; Wang, J. Q.; Wang, J.; Oh, S. H.; Li, W. et al. Surpassing the single-atom catalytic activity limit through paired Pt-O-Pt ensemble built from isolated Pt1 atoms. Nat. Commun. 2019, 10, 3808.

24

Kaiser, S. K.; Chen, Z. P.; Akl, D. F.; Mitchell, S.; Pérez-Ramírez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

25

Zhang, Y. W.; Zhang, M.; Han, Z. B.; Huang, S. J.; Yuan, D. Q.; Su, W. P. Atmosphere-pressure methane oxidation to methyl trifluoroacetate enabled by a porous organic polymer-supported single-site palladium catalyst. ACS Catal. 2021, 11, 1008–1013.

26

Zhang, J.; Zheng, C. Y.; Zhang, M. L.; Qiu, Y. J.; Xu, Q.; Cheong, W. C.; Chen, W. X.; Zheng, L. R.; Gu, L.; Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

27

Zhu, Z. J.; Yin, H. J.; Wang, Y.; Chuang, C. H.; Xing, L.; Dong, M. Y.; Lu, Y. R.; Casillas-Garcia, G.; Zheng, Y. L.; Chen, S. et al. Coexisting single-atomic Fe and Ni sites on hierarchically ordered porous carbon as a highly efficient ORR electrocatalyst. Adv. Mater. 2020, 32, 2004670.

28

Yan, J. Q.; Kong, L. Q.; Ji, Y. J.; White, J.; Li, Y. Y.; Zhang, J.; An, P. F.; Liu, S. Z.; Lee, S. T.; Ma, T. Y. Single atom tungsten doped ultrathin α-Ni(OH)2 for enhanced electrocatalytic water oxidation. Nat. Commun. 2019, 10, 2149.

29

Li, J. K.; Pršlja, P.; Shinagawa, T.; Fernández, A. J. M.; Krumeich, F.; Artyushkova, K.; Atanassov, P.; Zitolo, A.; Zhou, Y. C.; GarcíaMuelas, R. et al. Volcano trend in electrocatalytic CO2 reduction activity over atomically dispersed metal sites on nitrogen-doped carbon. ACS Catal. 2019, 9, 10426–10439.

30

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

31

Cao, L.; Luo, Q. Q.; Liu, W.; Lin, Y.; Liu, X. K.; Cao, Y. J.; Zhang, W.; Wu, Y.; Yang, J. L.; Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

32

Qu, Y. T.; Chen, B. X.; Li, Z. J.; Duan, X. Z.; Wang, L. G.; Lin, Y.; Yuan, T. W.; Zhou, F. Y.; Hu, Y. D.; Yang, Z. K. et al. Thermal emitting strategy to synthesize atomically dispersed Pt metal sites from bulk Pt metal. J. Am. Chem. Soc. 2019, 141, 4505–4509.

33

Hu, M. Y.; He, P.; Qiao, T. Z.; Sun, W.; Li, W. T.; Lian, J.; Li, J. H.; Zhu, S. F. Iron-catalyzed regiodivergent alkyne hydrosilylation. J. Am. Chem. Soc. 2020, 142, 16894–16902.

34

Wisthoff, M. F.; Pawley, S. B.; Cinderella, A. P.; Watson, D. A. Stereoselective synthesis of Cis- and Trans-tetrasubstituted vinyl silanes using a silyl-heck strategy and hiyama conditions for their cross-coupling. J. Am. Chem. Soc. 2020, 142, 12051–12055.

35

Kim, Y. B.; Kim, D.; Dighe, S. U.; Chang, S.; Park, J. W. Cobalt- hydride-catalyzed hydrosilylation of 3-alkynes accompanying π-bond migration. ACS Catal. 2021, 11, 1548–1553.

36

Li, R. H; An, X. M.; Yang, Y.; Li, D. C.; Hu, Z. L.; Zhan, Z. P. Highly regio- and stereoselective heterogeneous hydrosilylation of terminal alkynes over cobalt-metalated porous organic polymer. Org. Lett. 2018, 20, 5023–5026.

37

Sánchez-Page, B.; Munarriz, J.; Jiménez, M. V.; Pérez-Torrente, J. J.; Blasco, J.; Subias, G.; Passarelli, V.; Álvarez, P. β-(Z) Selectivity control by cyclometalated rhodium (Ⅲ)–Triazolylidene homogeneous and heterogeneous terminal alkyne hydrosilylation catalysts. ACS Catal. 2020, 10, 13334–13351.

38

Wen, H. N.; Wan, X. L.; Huang, Z. Asymmetric synthesis of silicon-stereogenic vinylhydrosilanes by cobalt-catalyzed regio- and enantioselective alkyne hydrosilylation with dihydrosilanes. Angew. Chem., Int. Ed. 2018, 57, 6319–6323.

39

Yang, X. X.; Wang, C. Y. Dichotomy of manganese catalysis via organometallic or radical mechanism: Stereodivergent hydrosilylation of alkynes. Angew. Chem., Int. Ed. 2018, 57, 923–928.

40

Puerta-Oteo, R.; Munarriz, J.; Polo, V.; Jiménez, M. V.; Pérez- Torrente, J. J. Carboxylate-assisted β-(Z) stereoselective hydrosilylation of terminal alkynes catalyzed by a zwitterionic Bis-NHC rhodium (Ⅲ) complex. ACS Catal. 2020, 10, 7367–7380.

41

Steiman, T. J.; Uyeda, C. Reversible substrate activation and catalysis at an intact metal–metal bond using a redox-active supporting ligand. J. Am. Chem. Soc. 2015, 137, 6104–6110.

42

Polizzi, C.; Caporusso, A. M.; Vitulli, G.; Salvadori, P.; Pasero, M. Supported platinum atoms derived catalysts in the hydrosilylation of unsaturated substrates. J. Mol. Catal. 1994, 91, 83–90.

43

Guo, W. S.; Pleixats, R.; Shafir, A.; Parella, T. Rhodium nanoflowers stabilized by a nitrogen-rich PEG-tagged substrate as recyclable catalyst for the stereoselective hydrosilylation of internal alkynes. Adv. Synth. Catal. 2015, 357, 89–99.

44

Psyllaki, A.; Lykakis, I. N.; Stratakis, M. Reaction of hydrosilanes with alkynes catalyzed by gold nanoparticles supported on TiO2. Tetrahedron 2012, 68, 8724–8731.

45

Sumida, Y.; Kato, T.; Yoshida, S.; Hosoya, T. Palladium-catalyzed regio- and stereoselective hydrosilylation of electron-deficient alkynes. Org. Lett. 2012, 14, 1552–1555.

46

Planellas, M.; Guo, W. S.; Alonso, F.; Yus, M.; Shafir, A.; Pleixats, R.; Parella, T. Hydrosilylation of internal alkynes catalyzed by Tris-imidazolium salt-stabilized palladium nanoparticles. Adv. Synth. Catal. 2014, 356, 179–188.

47

Reddy, C. B.; Shil, A. K.; Guha, N. R.; Sharma, D.; Das, P. Solid supported palladium (0) Nanoparticles: An efficient heterogeneous catalyst for regioselective hydrosilylation of alkynes and Suzuki coupling of β-Arylvinyl iodides. Catal. Lett. 2014, 144, 1530–1536.

48

Li, W. H.; Li, C. Y.; Xiong, H. Y.; Liu, Y.; Huang, W. Y.; Ji, G. J.; Jiang, Z.; Tang, H. T.; Pan, Y. M.; Ding, Y. J. Constructing mononuclear palladium catalysts by precoordination/solvothermal polymerization: Recyclable catalyst for regioselective oxidative heck reactions. Angew. Chem., Int. Ed. 2019, 58, 2448–2453.

49

Feng, S. Q.; Song, X. G.; Liu, Y.; Lin, X. S.; Yan, L.; Liu, S. Y.; Dong, W. R.; Yang, X. M.; Jiang, Z.; Ding, Y. J. In situ formation of mononuclear complexes by reaction-induced atomic dispersion of supported noble metal nanoparticles. Nat. Commun. 2019, 10, 5281.

50

Huang, W. Y.; Wang, G. Q.; Li, W. H.; Li, T. T.; Ji, G. J.; Ren, S. C.; Jiang, M.; Yan, L.; Tang, H. T.; Pan, Y. M. et al. Porous ligand creates new reaction route: Bifunctional single-atom palladium catalyst for selective distannylation of terminal alkynes. Chem 2020, 6, 2300–2313.

51

Nishizawa, A.; Takahira, T.; Yasui, K.; Fujimoto, H.; Iwai, T.; Sawamura, M.; Chatani, N.; Tobisu, M. Nickel-catalyzed decarboxylation of aryl carbamates for converting phenols into aromatic amines. J. Am. Chem. Soc. 2019, 141, 7261–7265.

52

Iwai, T.; Harada, T.; Hara, K.; Sawamura, M. Threefold cross-linked polystyrene–triphenylphosphane hybrids: Mono-P-Ligating behavior and catalytic applications for aryl chloride cross-coupling and C(sp3)-H Borylation. Angew. Chem., Int. Ed. 2013, 52, 12322–12326.

53

Cai, R.; Ye, X. H.; Sun, Q.; He, Q. Q.; He, Y.; Ma, S. Q.; Shi, X. D. Anchoring Triazole-Gold(Ⅰ) complex into porous organic polymer to boost the stability and reactivity of gold(Ⅰ) catalyst. ACS Catal. 2017, 7, 1087–1092.

54

Zhang, J.; Wang, Z. Y.; Chen, W. X.; Xiong, Y.; Cheong, W. C.; Zheng, L. R.; Yan, W. S.; Gu, L.; Chen, C.; Peng, Q. et al. Tuning Polarity of Cu-O bond in heterogeneous Cu catalyst to promote additive-free hydroboration of alkynes. Chem, 2020, 6, 725–737.

55

Yang, J. R.; Li, W. H.; Wang, D. S.; Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2170006.

56

Jiao, J. Q.; Pan, Y.; Wang, B.; Yang, W. J.; Liu, S. J.; Zhang, C. Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core–shell electrocatalysts for rechargeable zinc–air batteries. J. Energy Chem. 2021, 53, 364–371.

File
12274_2021_3694_MOESM1_ESM.pdf (10.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 May 2021
Revised: 16 June 2021
Accepted: 17 June 2021
Published: 10 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 22061003 and 21861006), Guangxi Natural Science Foundation of China (No. 2019GXNSFAA245027), Guangxi Key R & D Program (No. AB18221005), Science and Technology Major Project of Guangxi (No. AA17204058-21), Guangxi Science and Technology Base, and Special Talents (No. AD19110027) for financial support.

Return