Journal Home > Volume 15 , Issue 2

Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm−2. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ selective surface engineering of graphene micro-supercapacitor chips

Show Author's information Yiming Chen1,§Minghao Guo1,§Lin Xu1,2( )Yuyang Cai1Xiaocong Tian1,3Xiaobin Liao1Zhaoyang Wang1Jiashen Meng1Xufeng Hong1Liqiang Mai1,2( )
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of TechnologyWuhan 430070 China
Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory Xianhu Hydrogen ValleyFoshan 528200 China
Faculty of Materials Science & Chemistry China University of GeosciencesWuhan 430074 China

§ Yiming Chen and Minghao Guo contributed equally to this work.

Abstract

Surface modification of graphene oxide (GO) is a powerful strategy to develop its energy density for electrochemical energy storage. However, pre-modified GO always exhibits unsatisfactory hydrophilia and its ink-relevant utilization is extremely limited. Although GO ink is widely utilized in fabricating micro energy storage devices via extrusion-based 3D-printing, simultaneously obtaining satisfactory hydrophilia and high energy density still remains a challenge. In this work, an in-situ surface engineering strategy was employed to enhance the performance of GO micro-supercapacitor chips. Three dimensionally printed GO micro-supercapacitor chips were treated with pyrrole monomer to achieve selective and spontaneous anchoring of polypyrrole on the microelectrodes without affecting interspaces between the finger electrodes. The interface-reinforced graphene scaffolds were edge-welded and exhibited a considerably improved specific capacitance, from 13.6 to 128.4 mF·cm−2. These results are expected to provide a new method for improving the performance of micro-supercapacitors derived from GO inks and further strengthen the practicability of 3D printing techniques in fabricating energy storage devices.

Keywords: micro-supercapacitors, 3D-printing, in-situ modification, selective surface engineering, edge-welded graphene

References(82)

1

Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro- supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.

2

Kyeremateng, N. A.; Brousse, T.; Pech, D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. Nat. Nanotechnol. 2017, 12, 7–15.

3

Tyagi, A.; Tripathi, K. M.; Gupta, R. K. Recent progress in micro-scale energy storage devices and future aspects. J. Mater. Chem. A 2015, 3, 22507–22541.

4

Wu, Z. S.; Feng, X. L.; Cheng, H. M. Recent advances in graphene- based planar micro-supercapacitors for on-chip energy storage. Nat. Sci. Rev. 2014, 1, 277–292.

5

Shi, Y.; Peng, L. L.; Ding, Y.; Zhao, Y.; Yu, G. H. Nanostructured conductive polymers for advanced energy storage. Chem. Soc. Rev. 2015, 44, 6684–6696.

6

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

7

Westover, A. S.; Tian, J. W.; Bernath, S.; Oakes, L.; Edwards, R.; Shabab, F. N.; Chatterjee, S.; Anilkumar, A. V.; Pint, C. L. A multifunctional load-bearing solid-state supercapacitor. Nano Lett. 2014, 14, 3197–3202.

8

Wang, Y. F.; Yuan, H. M.; Zhu, Y. H.; Wang, Z. Q.; Hu, Z. W.; Xie, J. W.; Liao, C. Z.; Cheng, H.; Zhang, F. C.; Lu, Z. G. An all-in-one supercapacitor working at sub-zero temperatures. Sci. China Mater. 2020, 63, 660–666.

9

Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

10

Jiang, Q.; Kurra, N.; Xia, C.; Alshareef, H. N. Hybrid microsupercapacitors with vertically scaled 3D current collectors fabricated using a simple cut-and-transfer strategy. Adv. Energy Mater. 2017, 7, 1601257.

11

Peng, Y. Y.; Akuzum, B.; Kurra, N.; Zhao, M. Q.; Alhabeb, M.; Anasori, B.; Kumbur, E. C.; Alshareef, H. N.; Ger, M. D.; Gogotsi, Y. All-MXene (2D titanium carbide) solid-state microsupercapacitors for on-chip energy storage. Energy Environ. Sci. 2016, 9, 2847–2854.

12

Pu, X.; Liu, M. M.; Li, L. X.; Han, S. C.; Li, X. L.; Jiang, C. Y.; Du, C. H.; Luo, J. J.; Hu, W. G.; Wang, Z. L. Wearable textile-based in-plane microsupercapacitors. Adv. Energy Mater. 2016, 6, 1601254.

13

Cai, J. G.; Lv, C.; Hu, C.; Luo, J. H.; Liu, S.; Song, J. F.; Shi, Y.; Chen, C. G.; Zhang, Z.; Ogawa, S. et al. Laser direct writing of heteroatom-doped porous carbon for high-performance micro- supercapacitors. Energy Storage Mater. 2020, 25, 404–415.

14

Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Pan, Z. H.; Zhang, X.; Zhang, H.; He, Z. M.; Adams, S.; Chen, W.; Ding, J. et al. 3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Mater. 2020, 24, 336–342.

15

Yao, B.; Chandrasekaran, S.; Zhang, J.; Xiao, W.; Qian, F.; Zhu, C.; Duoss, E. B.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Efficient 3D printed pseudocapacitive electrodes with ultrahigh MnO2 loading. Joule 2019, 3, 459–470.

16

Zhu, C.; Liu, T. Y.; Qian, F.; Han, T. Y. J.; Duoss, E. B.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A.; Li, Y. Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 2016, 16, 3448–3456.

17

Peng, M. W.; Shi, D. L.; Sun, Y. H.; Cheng, J.; Zhao, B.; Xie, Y. M.; Zhang, J. C.; Guo, W.; Jia, Z.; Liang, Z. Q. et al. 3D printed mechanically robust graphene/CNT electrodes for highly efficient overall water splitting. Adv. Mater. 2020, 32, 1908201.

18

Yao, B.; Chandrasekaran, S.; Zhang, H. Z.; Ma, A. N.; Kang, J. Z.; Zhang, L.; Lu, X. H.; Qian, F.; Zhu, C.; Duoss, E. B. et al. 3D-printed structure boosts the kinetics and intrinsic capacitance of pseudocapacitive graphene aerogels. Adv. Mater. 2020, 32, 1906652.

19

Ambrosi, A.; Pumera, M. Self-contained polymer/metal 3D printed electrochemical platform for tailored water splitting. Adv. Funct. Mater. 2018, 28, 1700655.

20

Ambrosi, A.; Pumera, M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016, 45, 2740–2755.

21

Browne, M. P.; Redondo, E.; Pumera, M. 3D printing for electrochemical energy applications. Chem. Rev. 2020, 120, 2783–2810.

22

Egorov, V.; Gulzar, U.; Zhang, Y.; Breen, S.; O'Dwyer, C. Evolution of 3D printing methods and materials for electrochemical energy storage. Adv. Mater. 2020, 32, 2000556.

23

Fu, K.; Wang, Y. B.; Yan, C. Y.; Yao, Y. G.; Chen, Y. N.; Dai, J. Q.; Lacey, S.; Wang, Y. B.; Wan, J. Y.; Li, T. et al. Graphene oxide-based electrode inks for 3D-printed lithium-ion batteries. Adv. Mater. 2016, 28, 2587–2594.

24

Jiang, Y.; Shao, H. B.; Li, C. X.; Xu, T.; Zhao, Y.; Shi, G. Q.; Jiang, L.; Qu, L. T. Versatile graphene oxide putty-like material. Adv. Mater. 2016, 28, 10287–10292.

25

Jiang, Y. Q.; Xu, Z.; Huang, T. Q.; Liu, Y. J.; Guo, F.; Xi, J. B.; Gao, W. W.; Gao, C. Direct 3D printing of ultralight graphene oxide aerogel microlattices. Adv. Funct. Mater. 2018, 28, 1707024.

26

Lacey, S. D.; Kirsch, D. J.; Li, Y. J.; Morgenstern, J. T.; Zarket, B. C.; Yao, Y. G.; Dai, J. Q.; Garcia, L. Q.; Liu, B. Y.; Gao, T. T. et al. Extrusion-based 3D printing of hierarchically porous advanced battery electrodes. Adv. Mater. 2018, 30, 1705651.

27

Li, W. B.; Li, Y. H.; Su, M.; An, B. X.; Liu, J.; Su, D.; Li, L. H.; Li, F. Y.; Song, Y. L. Printing assembly and structural regulation of graphene towards three-dimensional flexible micro-supercapacitors. J. Mater. Chem. A 2017, 5, 16281–16288.

28

Liu, Y. Q.; Zhang, B. B.; Xu, Q.; Hou, Y. Y.; Seyedin, S.; Qin, S.; Wallace, G. G.; Beirne, S.; Razal, J. M.; Chen, J. Development of graphene oxide/polyaniline inks for high performance flexible microsupercapacitors via extrusion printing. Adv. Funct. Mater. 2018, 28, 1706592.

29

Shen, K.; Ding, J. W.; Yang, S. B. 3D printing quasi-solid-state asymmetric micro-supercapacitors with ultrahigh areal energy density. Adv. Energy Mater. 2018, 8, 1800408.

30

Shen, K.; Mei, H. L.; Li, B.; Ding, J. W.; Yang, S. B. 3D printing sulfur copolymer-graphene architectures for Li-S batteries. Adv. Energy Mater. 2018, 8, 1701527.

31

Tang, X. W.; Zhou, H.; Cai, Z. C.; Cheng, D. D.; He, P. S.; Xie, P. W.; Zhang, D.; Fan, T. X. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels. ACS Nano 2018, 12, 3502–3511.

32

Wang, Y. B.; Chen, C. J.; Xie, H.; Gao, T. T.; Yao, Y. G.; Pastel, G.; Han, X. G.; Li, Y. J.; Zhao, J. P.; Fu, K. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 2017, 27, 1703140.

33

Wang, Z. S.; Zhang, Q. E.; Long, S. C.; Luo, Y. X.; Yu, P. K.; Tan, Z. B.; Bai, J.; Qu, B. H.; Yang, Y.; Shi, J. et al. Three-dimensional printing of polyaniline/reduced graphene oxide composite for high- performance planar supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 10437–10444.

34

Wei, N.; Yu, L. H.; Sun, Z. T.; Song, Y. Z.; Wang, M. L.; Tian, Z. N.; Xia, Y.; Cai, J. S.; Li, Y. Y.; Zhao, L. et al. Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 2019, 13, 7517–7526.

35

Zhu, C.; Han, T. Y. J.; Duoss, E. B.; Golobic, A. M.; Kuntz, J. D.; Spadaccini, C. M.; Worsley, M. A. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 2015, 6, 6962.

36

Chen, C. L.; Jiang, J. M.; He, W. J.; Lei, W.; Hao, Q. L.; Zhang, X. G. 3D printed high-loading lithium-sulfur battery toward wearable energy storage. Adv. Funct. Mater. 2020, 30, 1909469.

37

Gao, T. T.; Zhou, Z.; Yu, J. Y.; Zhao, J.; Wang, G. L.; Cao, D. X.; Ding, B.; Li, Y. J. 3D printing of tunable energy storage devices with both high areal and volumetric energy densities. Adv. Energy Mater. 2019, 9, 1802578.

38

Li, X. R.; Li, H. P.; Fan, X. Q.; Shi, X. L.; Liang, J. J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv. Energy Mater. 2020, 10, 1903794.

39

Qiao, Y.; Liu, Y.; Chen, C. J.; Xie, H.; Yao, Y. G.; He, S. M.; Ping, W. W.; Liu, B. Y.; Hu, L. B. 3D-printed graphene oxide framework with thermal shock synthesized nanoparticles for Li-CO2 batteries. Adv. Funct. Mater. 2018, 28, 1805899.

40

Tang, X. W.; Zhu, C. L.; Cheng, D. D.; Zhou, H.; Liu, X. H.; Xie, P. W.; Zhao, Q. B.; Zhang, D.; Fan, T. X. Architectured leaf-inspired Ni0.33Co0.66S2/graphene aerogels via 3D printing for high-performance energy storage. Adv. Funct. Mater. 2018, 28, 1805057.

41

Fan, Z. D.; Wei, C. H.; Yu, L. H.; Xia, Z.; Cai, J. S.; Tian, Z. N.; Zou, G. F.; Dou, S. X.; Sun, J. Y. 3D printing of porous nitrogen-doped Ti3C2 MXene scaffolds for high-performance sodium-ion hybrid capacitors. ACS Nano 2020, 14, 867–876.

42

Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro- supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

43

Shen, K.; Li, B.; Yang, S. B. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 2020, 24, 670–675.

44

Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.

45

Yu, L. H.; Fan, Z. D.; Shao, Y. L.; Tian, Z. N.; Sun, J. Y.; Liu, Z. F. Versatile N-doped MXene ink for printed electrochemical energy storage application. Adv. Energy Mater. 2019, 9, 1901839.

46

Cao, D. X.; Xing, Y. J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y. C.; Chen, L. et al. 3D printed high-performance lithium metal microbatteries enabled by nanocellulose. Adv. Mater. 2019, 31, 1807313.

47

Lin, X. T.; Wang, J. W.; Gao, X. J.; Wang, S. Z.; Sun, Q.; Luo, J.; Zhao, C. T.; Zhao, Y.; Yang, X. F.; Wang, C. H. et al. 3D printing of free-standing "O2 breathable" air electrodes for high-capacity and long-life Na–O2 batteries. Chem. Mater. 2020, 32, 3018–3027.

48

Lyu, Z. Y.; Lim, G. J. H.; Guo, R.; Kou, Z. K.; Wang, T. T.; Guan, C.; Ding, J.; Chen, W.; Wang, J. 3D-printed MOF-derived hierarchically porous frameworks for practical high-energy density Li-O2 batteries. Adv. Funct. Mater. 2019, 29, 1806658.

49

Zhang, J.; Li, X. L.; Fan, S.; Huang, S. Z.; Yan, D.; Liu, L.; Alvarado, P. V. Y.; Yang, H. Y. 3D-printed functional electrodes towards Zn-air batteries. Mater. Today Energy 2020, 16, 100407.

50

Li, H. P.; Liang, J. J. Recent development of printed micro- supercapacitors: Printable materials, printing technologies, and perspectives. Adv. Mater. 2020, 32, 1805864.

51

Wang, Q.; Yan, J.; Fan, Z. J. Carbon materials for high volumetric performance supercapacitors: Design, progress, challenges and opportunities. Energy Environ. Sci. 2016, 9, 729–762.

52

Shi, R. Y.; Han, C. P.; Duan, H.; Xu, L.; Zhou, D.; Li, H. F.; Li, J. Q.; Kang, F. Y.; Li, B. H.; Wang, G. X. Redox-active organic sodium anthraquinone-2-sulfonate (AQS) anchored on reduced graphene oxide for high-performance supercapacitors. Adv. Energy Mater. 2018, 8, 1802088.

53

Xu, L.; Shi, R. Y.; Li, H. F.; Han, C. P.; Wu, M. Y.; Wong, C. P.; Kang, F. Y.; Li, B. H. Pseudocapacitive anthraquinone modified with reduced graphene oxide for flexible symmetric all-solid-state supercapacitors. Carbon 2018, 127, 459–468.

54

Wu, C. X.; Zhang, Z. F.; Chen, Z. H.; Jiang, Z. M.; Li, H. Y.; Cao, H. J.; Liu, Y. S.; Zhu, Y. Y.; Fang, Z. B.; Yu, X. R. Rational design of novel ultra-small amorphous Fe2O3 nanodots/graphene heterostructures for all-solid-state asymmetric supercapacitors. Nano Res. 2021, 14, 953–960.

55

Zhang, Y.; Tao, B. L.; Xing, W.; Zhang, L.; Xue, Q. Z.; Yan, Z. F. Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance. Nanoscale 2016, 8, 7889–7898.

56

Li, S.; Zhao, C.; Shu, K. W.; Wang, C. Y.; Guo, Z. P.; Wallace, G. G.; Liu, H. K. Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 2014, 79, 554–562.

57
Sun, W.; Gao, G. H.; Wu, G. M.; You, Z. W. Surface-oxidation- mediated construction of Ppy@VNO/NG core-shell host targeting highly capacitive and durable negative electrode for supercapacitors. Sci. China Mater., in press, DOI: 10.1007/s40843-020-1607-2.https://doi.org/10.1007/s40843-020-1607-2
DOI
58

Ren, Y. M.; Yu, C. B.; Chen, Z. H.; Xu, Y. X. Two-dimensional polymer nanosheets for efficient energy storage and conversion. Nano Res. 2021, 14, 2023–2036.

59

Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.

60

Yang, C. M.; Weidenthaler, C.; Spliethoff, B.; Mayanna, M.; Schüth, F. Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem. Mater. 2005, 17, 355–358.

61

Amarnath, C. A.; Hong, C. E.; Kim, N. H.; Ku, B. C.; Kuila, T.; Lee, J. H. Efficient synthesis of graphene sheets using pyrrole as a reducing agent. Carbon 2011, 49, 3497–3502.

62

Gong, F.; Xu, X.; Zhou, G.; Wang, Z. S. Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 546–552.

63

Lu, X. J.; Dou, H.; Yuan, C. Z.; Yang, S. D.; Hao, L.; Zhang, F.; Shen, L. F.; Zhang, L. J.; Zhang, X. G. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors. J. Power Sources 2012, 197, 319–324.

64

Wang, L. C.; Zhang, C. G.; Jiao, X.; Yuan, Z. H. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res. 2019, 12, 1129–1137.

65

Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.; El-Shall, M. S.; Al-Resayes, S. I.; El-Azhary, A. A. Microwave synthesis of graphene sheets supporting metal nanocrystals in aqueous and organic media. J. Mater. Chem. 2009, 19, 3832–3837.

66

Bora, C.; Dolui, S. K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 2012, 53, 923–932.

67

Zhao, Y.; Liu, J.; Hu, Y.; Cheng, H. H.; Hu, C. G.; Jiang, C. C.; Jiang, L.; Cao, A. Y.; Qu, L. T. Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv. Mater. 2013, 25, 591–595.

68

Jiang, Y.; Hu, C. G.; Cheng, H. H.; Li, C. X.; Xu, T.; Zhao, Y.; Shao, H. B.; Qu, L. T. Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators. ACS Nano 2016, 10, 4735–4741.

69

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

70

Ma, T.; Gao, H. L.; Cong, H. P.; Yao, H. B.; Wu, L.; Yu, Z. Y.; Chen, S. M.; Yu, S. H. A bioinspired interface design for improving the strength and electrical conductivity of graphene-based fibers. Adv. Mater. 2018, 30, 1706435.

71

Miao, J. L.; Liu, H. H.; Li, Y. B.; Zhang, X. X. Biodegradable transparent substrate based on edible starch-chitosan embedded with nature-inspired three-dimensionally interconnected conductive nanocomposites for wearable green electronics. ACS Appl. Mater. Interfaces 2018, 10, 23037–23047.

72

Yang, Y. C.; Kim, N. D.; Varshney, V.; Sihn, S.; Li, Y. L.; Roy, A. K.; Tour, J. M.; Lou, J. In situ mechanical investigation of carbon nanotube-graphene junction in three-dimensional carbon nanostructures. Nanoscale 2017, 9, 2916–2924.

73

You, B.; Wang, L. L.; Yao, L.; Yang, J. Three dimensional N-doped graphene-CNT networks for supercapacitor. Chem Commun. 2013, 49, 5016–5018.

74

Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

75

Xiao, H.; Wu, Z. S.; Chen, L.; Zhou, F.; Zheng, S. H.; Ren, W. C.; Cheng, H. M.; Bao, X. H. One-step device fabrication of phosphorene and graphene interdigital micro-supercapacitors with high energy density. ACS Nano 2017, 11, 7284–7292.

76

Zheng, S. H.; Li, Z. L.; Wu, Z. S.; Dong, Y. F.; Zhou, F.; Wang, S.; Fu, Q.; Sun, C. L.; Guo, L. W.; Bao, X. H. High packing density unidirectional arrays of vertically aligned graphene with enhanced areal capacitance for high-power micro-supercapacitors. ACS Nano 2017, 11, 4009–4016.

77

Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

78

Shao, Y. L.; Li, J. M.; Li, Y. G.; Wang, H. Z.; Zhang, Q. H.; Kaner, R. B. Flexible quasi-solid-state planar micro-supercapacitor based on cellular graphene films. Mater. Horiz. 2017, 4, 1145–1150.

79

Wang, S.; Wu, Z. S.; Zheng, S. H.; Zhou, F.; Sun, C. L.; Cheng, H. M.; Bao, X. H. Scalable fabrication of photochemically reduced graphene-based monolithic micro-supercapacitors with superior energy and power densities. ACS Nano 2017, 11, 4283–4291.

80

Wu, Z. S.; Tan, Y. Z.; Zheng, S. H.; Wang, S.; Parvez, K.; Qin, J. Q.; Shi, X. Y.; Sun, C. L.; Bao, X. H.; Feng, X. L. et al. Bottom-up fabrication of sulfur-doped graphene films derived from sulfur- annulated nanographene for ultrahigh volumetric capacitance micro- supercapacitors. J. Am. Chem. Soc. 2017, 139, 4506–4512.

81

Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.

82

Lee, G.; Kang, S. K.; Won, S. M.; Gutruf, P.; Jeong, Y. R.; Koo, J.; Lee, S. S.; Rogers, J. A.; Ha, J. S. Fully biodegradable microsupercapacitor for power storage in transient electronics. Adv. Energy Mater. 2017, 7, 1700157.

File
12274_2021_3693_MOESM1_ESM.pdf (3.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2021
Revised: 07 June 2021
Accepted: 16 June 2021
Published: 17 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2020YFA715000), the National Natural Science Foundation of China (No. 51802239), the National Key Research and Development Program of China (No. 2019YFA0704902), Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory (Nos. XHT2020-005 and XHT2020-003), the Natural Science Foundation of Hubei Province (No. 2019CFA001), the Fundamental Research Funds for the Central Universities (Nos. 2020III011GX, 2020IVB057, 2019IVB054, 2019III062JL, and 2019-YB-008).

Return