Journal Home > Volume 15 , Issue 2

Two-dimensional (2D) magnetic crystals have been extensively explored thanks to their potential applications in spintronics, valleytronics, and topological superconductivity. Here we report a novel monolayer magnet, namely puckered pentagonal VTe2 (PP-VTe2), intriguing atomic and electronic structures of which were firmly validated from first-principles calculations. The PP-VTe2 exhibits strong intrinsic ferromagnetism and semiconducting property distinct from the half-metallic bulk pyrite VTe2 (BP-VTe2) phase. An unusual magnetic anisotropy with large magnetic exchange energies is found. More interestingly, the multiferroic coupling between its 2D ferroelasticity and in-plane magnetization is further identified in PP-VTe2, lending it unprecedented controllability with external strains and electric fields. Serving as an emergent 2D ferromagnetic semiconductor with a novel crystal structure, monolayer PP-VTe2 provides an ideal platform for exploring exotic crystalline and spin configurations in low-dimensional systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Monolayer puckered pentagonal VTe2: An emergent two- dimensional ferromagnetic semiconductor with multiferroic coupling

Show Author's information Xuanyi Li1Zhili Zhu1Qing Yang1Zexian Cao1Yeliang Wang2,1,3Sheng Meng1( )Jiatao Sun2,1,4( )Hong-Jun Gao1,3
Institute of Physics and University of Chinese Academy of Sciences Chinese Academy of SciencessBeijing 100190 China
School of Information and Electronics MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices Beijing Institute of TechnologyBeijing 100081 China
CAS Center for Excellence in Topological Quantum ComputationBeijing 100049 China
BIT Chongqing Center for Microelectronics and MicrosystemsChongqing 401332 China

Abstract

Two-dimensional (2D) magnetic crystals have been extensively explored thanks to their potential applications in spintronics, valleytronics, and topological superconductivity. Here we report a novel monolayer magnet, namely puckered pentagonal VTe2 (PP-VTe2), intriguing atomic and electronic structures of which were firmly validated from first-principles calculations. The PP-VTe2 exhibits strong intrinsic ferromagnetism and semiconducting property distinct from the half-metallic bulk pyrite VTe2 (BP-VTe2) phase. An unusual magnetic anisotropy with large magnetic exchange energies is found. More interestingly, the multiferroic coupling between its 2D ferroelasticity and in-plane magnetization is further identified in PP-VTe2, lending it unprecedented controllability with external strains and electric fields. Serving as an emergent 2D ferromagnetic semiconductor with a novel crystal structure, monolayer PP-VTe2 provides an ideal platform for exploring exotic crystalline and spin configurations in low-dimensional systems.

Keywords: first-principles, ferroelasticity, puckered pentagonal, VTe2, ferromagnetic semiconductor

References(51)

1

Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D. R.; Cheng, R.; Seyler, K. L.; Zhong, D.; Schmidgall, E.; McGuire, M. A.; Cobden, D. H. et al. Layer-dependent ferromagnetism in a van der waals crystal down to the monolayer limit. Nature 2017, 546, 270–273.

2

Avsar, A.; Ochoa, H.; Guinea, F.; Özyilmaz, B.; van Wees, B. J.; Vera-Marun, I. J. Colloquium: Spintronics in graphene and other two-dimensional materials. Rev. Mod. Phys. 2020, 92, 021003.

3

Lin, X. Y.; Yang, W.; Wang, K. L.; Zhao, W. S. Two-dimensional spintronics for low-power electronics. Nat. Electron. 2019, 2, 274–283.

4

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

5

Jimenez, V. O.; Kalappattil, V.; Eggers, T.; Bonilla, M.; Kolekar, S.; Huy, P. T.; Batzill, M.; Phan, M. H. A magnetic sensor using a 2D van der Waals ferromagnetic material. Sci. Rep. 2020, 10, 4789.

6

Shen, J. X.; Shang, D. S.; Chai, Y. S.; Wang, S. G.; Shen, B. G.; Sun, Y. Mimicking synaptic plasticity and neural network using memtranstors. Adv. Mater. 2018, 30, 1706717.

7

Liu, C. S.; Chen, H. W.; Wang, S. Y.; Liu, Q.; Jiang, Y. G.; Zhang, D. W.; Liu, M.; Zhou, P. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 2020, 15, 545–557.

8

Gong, C.; Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 2019, 363, eaav4450.

9

Mak, K. F.; Shan, J.; Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 2019, 1, 646–661.

10

Gong, C.; Li, L.; Li, Z. L.; Ji, H. W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C. Z.; Wang, Y. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269.

11

Deng, Y. J.; Yu, Y. J.; Song, Y. C.; Zhang, J. Z.; Wang, N. Z.; Sun, Z. Y.; Yi, Y. F.; Wu, Y. Z.; Wu, S. W.; Zhu, J. Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 2018, 563, 94–99.

12

Li, B.; Wan, Z.; Wang, C.; Chen, P.; Huang, B.; Cheng, X.; Qian, Q.; Li, J.; Zhang, Z. W.; Sun, G. Z. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 2021, 20, 818–825.

13

Sun, X. D.; Li, W. Y.; Wang, X.; Sui, Q.; Zhang, T. Y.; Wang, Z.; Liu, L.; Li, D.; Feng, S.; Zhong, S. Y. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 2020, 13, 3358–3363.

14

Thiel, L.; Wang, Z.; Tschudin, M. A.; Rohner, D.; Gutiérrez- Lezama, I.; Ubrig, N.; Gibertini, M.; Giannini, E.; Morpurgo, A. F.; Maletinsky, P. Probing magnetism in 2D materials at the nanoscale with single- spin microscopy. Science 2019, 364, 973–976.

15

Huang, B.; Clark, G.; Klein, D. R.; MacNeill, D.; Navarro- Moratalla, E.; Seyler, K. L.; Wilson, N.; McGuire, M. A.; Cobden, D. H.; Xiao, D. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 2018, 13, 544–548.

16

Jiang, S. W.; Li, L. Z.; Wang, Z. F.; Mak, K. F.; Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 2018, 13, 549–553.

17

Chen, W. J.; Sun, Z. Y.; Wang, Z. J.; Gu, L. H.; Xu, X. D.; Wu, S. W.; Gao, C. L. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 2019, 366, 983–987.

18

Bonilla, M.; Kolekar, S.; Ma, Y. J.; Diaz, H. C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H. R.; Phan, M. H.; Batzill, M. Strong room- temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293.

19

Liu, Z. L.; Wu, X.; Shao, Y.; Qi, J.; Cao, Y.; Huang, L.; Liu, C.; Wang, J. O.; Zheng, Q.; Zhu, Z. L. et al. Epitaxially grown monolayer VSe2: An air-stable magnetic two-dimensional material with low work function at edges. Sci. Bull. 2018, 63, 419–425.

20

Yu, W.; Li, J.; Herng, T. S.; Wang, Z. S.; Zhao, X. X.; Chi, X.; Fu, W.; Abdelwahab, I.; Zhou, J.; Dan, J. D. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 2019, 31, 1903779.

21

Coelho, P. M.; Nguyen Cong, K.; Bonilla, M.; Kolekar, S.; Phan, M. H.; Avila, J.; Asensio, M. C.; Oleynik, I. I.; Batzill, M. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 2019, 123, 14089–14096.

22

Zhang, W.; Zhang, L.; Wong, P. K. J.; Yuan, J. R.; Vinai, G.; Torelli, P.; van der Laan, G.; Feng, Y. P.; Wee, A. T. S. Magnetic transition in monolayer VSe2 via interface hybridization. ACS Nano 2019, 13, 8997–9004.

23

Liu, H. T.; Xue, Y. Z.; Shi, J. A.; Guzman, R. A.; Zhang, P. P.; Zhou, Z.; He, Y. G.; Bian, C.; Wu, L. M.; Ma, R. S. et al. Observation of the kondo effect in multilayer single-crystalline VTe2 nanoplates. Nano Lett. 2019, 19, 8572–8580.

24

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

25

Coelho, P. M.; Lasek, K.; Nguyen Cong, K.; Li, J. F.; Niu, W.; Liu, W. Q.; Oleynik, I. I.; Batzill, M. Monolayer modification of VTe2 and its charge density wave. J. Phys. Chem. Lett. 2019, 10, 4987–4993.

26

Wang, Y.; Ren, J. H.; Li, J. H.; Wang, Y. J.; Peng, H. N.; Yu, P.; Duan, W. H.; Zhou, S. Y. Evidence of charge density wave with anisotropic gap in a monolayer VTe2 film. Phys. Rev. B 2019, 100, 241404(R).

27

Miao, G. Y.; Xue, S. W.; Li, B.; Lin, Z. J.; Liu, B.; Zhu, X. T.; Wang, W. H.; Guo, J. D. Real-space investigation of the charge density wave in VTe2 monolayer with broken rotational and mirror symmetries. Phys. Rev. B 2020, 101, 035407.

28

Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

29

Li, E.; Wang, D. F.; Fan, P.; Zhang, R. Z.; Zhang, Y. Y.; Li, G.; Mao, J. H.; Wang, Y. L.; Lin, X.; Du, S. X. et al. Construction of bilayer PdSe2 on epitaxial graphene. Nano Res. 2018, 11, 5858–5865.

30

Lu, L. S.; Chen, G. H.; Cheng, H. Y.; Chuu, C. P.; Lu, K. C.; Chen, C. H.; Lu, M. Y.; Chuang, T. H.; Wei, D. H.; Chueh, W. C. et al. Layer- dependent and in-plane anisotropic properties of low-temperature synthesized few-layer PdSe2 single crystals. ACS Nano 2020, 14, 4963–4972.

31
Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1954.
32

Lin, J. H.; Zuluaga, S.; Yu, P.; Liu, Z.; Pantelides, S. T.; Suenaga, K. Novel Pd2Se3 Two-dimensional phase driven by interlayer fusion in layered PdSe2. Phys. Rev. Lett. 2017, 119, 016101.

33

Puretzky, A. A.; Oyedele, A. D.; Xiao, K.; Haglund, A. V.; Sumpter, B. G.; Mandrus, D.; Geohegan, D. B.; Liang, L. B. Anomalous interlayer vibrations in strongly coupled layered PdSe2. 2D Mater. 2018, 5, 035016.

34

Mounet, N.; Gibertini, M.; Schwaller, P.; Campi, D.; Merkys, A.; Marrazzo, A.; Sohier, T.; Castelli, I. E.; Cepellotti, A.; Pizzi, G. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 2018, 13, 246–252.

35

Li, X. X.; Yang, J. L. CrXTe3 (X = Si, Ge) Nanosheets: Two dimensional intrinsic ferromagnetic semiconductors. J. Mater. Chem. C 2014, 2, 7071–7076.

36

Lutfalla, S.; Shapovalov, V.; Bell, A. T. Calibration of the DFT/ GGA+U Method for determination of reduction energies for transition and rare earth metal oxides of Ti, V, Mo, and Ce. J. Chem. Theory Comput. 2011, 7, 2218–2223.

37

Li, X. Y.; Meng, S.; Sun, J. T. Emergence of d-orbital magnetic dirac fermions in a MoS2 monolayer with squared pentagon structure. Phys. Rev. B 2020, 101, 144409.

38

Zhu, Y.; Kong, X. H.; Rhone, T. D.; Guo, H. Systematic search for two-dimensional ferromagnetic materials. Phys. Rev. Mater. 2018, 2, 081001(R).

39

Lu, X. B.; Fei, R. X.; Yang, L. Curie temperature of emerging two- dimensional magnetic structures. Phys. Rev. B 2019, 100, 205409.

40

Wang, C.; Zhou, X. Y.; Zhou, L. W.; Tong, N. H.; Lu, Z. Y.; Ji, W. A family of high-temperature ferromagnetic monolayers with locked spin-dichroism-mobility anisotropy: MnNX and CrCX (X = Cl, Br, I; C = S, Se, Te). Sci. Bull. 2019, 64, 293–300.

41

Sun, Y. J.; Zhuo, Z. W.; Wu, X. J. Bipolar magnetism in a two- dimensional NbS2 semiconductor with high curie temperature. J. Mater. Chem. C 2018, 6, 11401–11406.

42

Jiang, Z.; Wang, P.; Xing, J. P.; Jiang, X.; Zhao, J. J. Screening and design of novel 2D ferromagnetic materials with high curie temperature above room temperature. ACS Appl. Mater. Interfaces 2018, 10, 39032–39039.

43

Guo, Y. L.; Wang, B.; Zhang, X. W.; Yuan, S. J.; Ma, L.; Wang, J. L. Magnetic two-dimensional layered crystals meet with ferromagnetic semiconductors. InfoMat 2020, 2, 639–655.

44

Li, X. X.; Yang, J. L. Toward room-temperature magnetic semiconductors in two-dimensional ferrimagnetic organometallic lattices. J. Phys. Chem. Lett. 2019, 10, 2439–2444.

45

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

46

Wu, M. H.; Zeng, X. C. Intrinsic ferroelasticity and/or multiferroicity in two-dimensional phosphorene and phosphorene analogues. Nano Lett. 2016, 16, 3236–3241.

47

Zhang, G. H.; Qin, H. J.; Chen, J.; He, X. Y.; Lu, L.; Li, Y. Q.; Wu, K. H. Growth of topological insulator Bi2Se3 thin films on SrTiO3 with large tunability in chemical potential. Adv. Funct. Mater. 2011, 21, 2351–2355.

48

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

49

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

50

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

51

Le Page, Y.; Saxe, P. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys. Rev. B 2002, 65, 104104.

File
12274_2021_3692_MOESM1_ESM.pdf (1.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2021
Revised: 02 June 2021
Accepted: 16 June 2021
Published: 10 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (Nos. 2020YFA0308800, 2016YFA0202300, and 2016YFA0300902), the National Natural Science Foundation of China (Nos. 91850120 and 11974045), and the Strategic Priority Research Program (B) of CAS (No. XDB30000000). The computing resources were provided by the Institute of Physics, Chinese Academy of Sciences and Songshan Lake Supercomputing Facilities.

Return