Journal Home > Volume 15 , Issue 2

Strong light-matter interactions involved with photons and quasiparticles are fundamentally interesting to access the wealthy many-body physics in quantum mechanics. The emerging two-dimensional (2D) semiconductors with large exciton binding energies and strong quantum confinement allow to investigate exciton-photon coupling at elevated temperatures. Here we report room- temperature formation of Bragg polaritons in monolayer semiconductor on a dielectric mirror through the exciton-Bragg photon coupling. With the negative detuning energy of ~ 30 meV, angle-resolved reflection signals reveal anti-crossing behaviors of lower and upper polariton branches at ±18° together with the Rabi splitting of 10 meV. Meanwhile, the strengthened photoluminescence appears in the lower polariton branch right below the anti-crossing angles, indicating the presence of the characteristic bottleneck effect caused by the slowing exciton-polariton energy relaxation towards the band minimum. The extracted coupling strength is between the ones of weak and distinct strong coupling regimes, where the eigenenergy splitting induced by the moderate coupling is resolvable but not large enough to fully separate two polaritonic components. Our work develops a simplified strategy to generate exciton-polaritons in 2D semiconductors and can be further extended to probe the intriguing bosonic characteristics of these quasiparticles, such as Bose-Einstein condensation, polariton lasing and superfluidity, directly at the material surfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Observation of Bragg polaritons in monolayer tungsten disulphide

Show Author's information Xu Wang1,§Lishu Wu2,§Xuewen Zhang1Weihuang Yang3Zheng Sun4Jingzhi Shang1( )Wei Huang1,5( )Ting Yu2( )
Shaanxi Institute of Flexible Electronics (SIFE) Northwestern Polytechnical University (NPU), 1 Dongxiang RoadXi'an 710129 China
Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 637371 Singapore
Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems College of Electronics and Information Hangzhou Dianzi UniversityHangzhou 310018 China
State Key Laboratory of Precision Spectroscopy East China Normal University, 500 Dongchuan RoadShanghai 200241 China
Key Laboratory of Flexible Electronics and Institute of Advanced Materials National Jiangsu Synergetic Innovation Centre for Advanced Materials Nanjing Tech University, 30 South Puzhu RoadNanjing 211816 China

§ Xu Wang and Lishu Wu contributed equally to this work.

Abstract

Strong light-matter interactions involved with photons and quasiparticles are fundamentally interesting to access the wealthy many-body physics in quantum mechanics. The emerging two-dimensional (2D) semiconductors with large exciton binding energies and strong quantum confinement allow to investigate exciton-photon coupling at elevated temperatures. Here we report room- temperature formation of Bragg polaritons in monolayer semiconductor on a dielectric mirror through the exciton-Bragg photon coupling. With the negative detuning energy of ~ 30 meV, angle-resolved reflection signals reveal anti-crossing behaviors of lower and upper polariton branches at ±18° together with the Rabi splitting of 10 meV. Meanwhile, the strengthened photoluminescence appears in the lower polariton branch right below the anti-crossing angles, indicating the presence of the characteristic bottleneck effect caused by the slowing exciton-polariton energy relaxation towards the band minimum. The extracted coupling strength is between the ones of weak and distinct strong coupling regimes, where the eigenenergy splitting induced by the moderate coupling is resolvable but not large enough to fully separate two polaritonic components. Our work develops a simplified strategy to generate exciton-polaritons in 2D semiconductors and can be further extended to probe the intriguing bosonic characteristics of these quasiparticles, such as Bose-Einstein condensation, polariton lasing and superfluidity, directly at the material surfaces.

Keywords: Bragg polariton, exciton-photon coupling, two-dimensional (2D) semiconductor, Rabi splitting, microcavity

References(42)

1

Basov, D. N.; Fogler, M. M.; De Abajo, F. J. G. Polaritons in van der waals materials. Science 2016, 354, aag1992.

2

Hu, F. R.; Fei, Z. Recent progress on exciton polaritons in layered transition-metal dichalcogenides. Adv. Opt. Mater. 2020, 8, 1901003.

3

Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 2016, 10, 216–226.

4

Deng, H.; Haug, H.; Yamamoto, Y. Exciton-polariton bose-einstein condensation. Rev. Mod. Phys. 2010, 82, 1489–1537.

5

Gibbs, H. M.; Khitrova, G.; Koch, S. W. Exciton-polariton light- semiconductor coupling effects. Nat. Photonics 2011, 5, 273.

6

Sanvitto, D.; Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 2016, 15, 1061–1073.

7

Byrnes, T.; Kim, N. Y.; Yamamoto, Y. Exciton-polariton condensates. Nat. Phys. 2014, 10, 803–813.

8

Liu, X. Z.; Galfsky, T.; Sun, Z.; Xia, F. N.; Lin, E. C.; Lee, Y. H.; Kéna-Cohen, S.; Menon, V. M. Strong light-matter coupling in two-dimensional atomic crystals. Nat. Photonics. 2015, 9, 30–34.

9

Flatten, L. C.; He, Z.; Coles, D. M.; Trichet, A. A. P.; Powell, A. W.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Room-temperature exciton- polaritons with two-dimensional WS2. Sci. Rep. 2016, 6, 33134.

10

Lundt, N.; Klembt, S.; Cherotchenko, E.; Betzold, S.; Iff, O.; Nalitov, A. V.; Klaas, M.; Dietrich, C. P.; Kavokin, A. V.; Höfling, S. et al. Room-temperature tamm-plasmon exciton-polaritons with a WSe2 monolayer. Nat. Commun. 2016, 7, 13328.

11

Sun, Z.; Gu, J.; Ghazaryan, A.; Shotan, Z.; Considine, C. R.; Dollar, M.; Chakraborty, B.; Liu, X. Z.; Ghaemi, P.; Kéna-Cohen, S. et al. Optical control of room-temperature valley polaritons. Nat. Photonics 2017, 11, 491–496.

12

Dufferwiel, S.; Lyons, T. P.; Solnyshkov, D. D.; Trichet, A. A. P.; Withers, F.; Schwarz, S.; Malpuech, G.; Smith, J. M.; Novoselov, K. S.; Skolnick, M. S. et al. Valley-addressable polaritons in atomically thin semiconductors. Nat. Photonics 2017, 11, 497–501.

13

Chen, Y. J.; Cain, J. D.; Stanev, T. K.; Dravid, V. P.; Stern, N. P. Valley-polarized exciton–polaritons in a monolayer semiconductor. Nat. Photonics 2017, 11, 431–435.

14

Dufferwiel, S.; Schwarz, S.; Withers, F.; Trichet, A. A. P.; Li, F.; Sich, M.; Del Pozo-Zamudio, O.; Clark, C.; Nalitov, A.; Solnyshkov, D. D. et al. Exciton–polaritons in van der waals heterostructures embedded in tunable microcavities. Nat. Commun. 2015, 6, 8579.

15

Lundt, N.; Nagler, P.; Nalitov, A.; Klembt, S.; Wurdack, M.; Stoll, S.; Harder, T. H.; Betzold, S.; Baumann, V.; Kavokin, A. V. et al. Valley polarized relaxation and upconversion luminescence from tamm- plasmon trion–polaritons with a MoSe2 monolayer. 2D Mater. 2017, 4, 025096.

16

Dhara, S.; Chakraborty, C.; Goodfellow, K. M.; Qiu, L.; O'Loughlin, T. A.; Wicks, G. W.; Bhattacharjee, S.; Vamivakas, A. N. Anomalous dispersion of microcavity trion-polaritons. Nat. Phys. 2018, 14, 130–133.

17

Richard, M.; Romestain, R.; André, R.; Dang, L. S. Consequences of strong coupling between excitons and microcavity leaky modes. Appl. Phys. Lett. 2005, 86, 071916.

18

Christopoulos, S.; Von Högersthal, G. B. H.; Grundy, A. J. D.; Lagoudakis, P. G.; Kavokin, A. V.; Baumberg, J. J.; Christmann, G.; Butté, R.; Feltin, E.; Carlin, J. F. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 2007, 98, 126405.

19

Faure, S.; Brimont, C.; Guillet, T.; Bretagnon, T.; Gil, B.; Médard, F.; Lagarde, D.; Disseix, P.; Leymarie, J.; Zúñiga-Pérez, J. et al. Relaxation and emission of bragg-mode and cavity-mode polaritons in a zno microcavity at room temperature. Appl. Phys. Lett. 2009, 95, 121102.

20

Goldberg, D.; Deych, L. I.; Lisyansky, A. A.; Shi, Z.; Menon, V. M.; Tokranov, V.; Yakimov, M.; Oktyabrsky, S. Exciton-lattice polaritons in multiple-quantum-well-based photonic crystals. Nat. Photonics 2009, 3, 662–666.

21

Askitopoulos, A.; Mouchliadis, L.; Iorsh, I.; Christmann, G.; Baumberg, J. J.; Kaliteevski, M. A.; Hatzopoulos, Z.; Savvidis, P. G. Bragg polaritons: Strong coupling and amplification in an unfolded microcavity. Phys. Rev. Lett. 2011, 106, 076401.

22

Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

23

Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

24

Plechinger, G.; Nagler, P.; Kraus, J.; Paradiso, N.; Strunk, C.; Schüller, C.; Korn, T. Identification of excitons, trions and biexcitons in single-layer WS2. Phys. Status Solidi-R 2015, 9, 457–461.

25

Hopfield, J. J. Theory of the contribution of excitons to the complex dielectric constant of crystals. Phys. Rev. 1958, 112, 1555–1567.

26

Zhang, L.; Gogna, R.; Burg, W.; Tutuc, E.; Deng, H. Photonic-crystal exciton-polaritons in monolayer semiconductors. Nat. Commun. 2018, 9, 713.

27

Tassone, F.; Piermarocchi, C.; Savona, V.; Quattropani, A.; Schwendimann, P. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons. Phys. Rev. B 1997, 56, 7554–7563.

28

Richard, M.; Kasprzak, J.; André, R.; Romestain, R.; Dang, L. S.; Malpuech, G.; Kavokin, A. Experimental evidence for nonequilibrium bose condensation of exciton polaritons. Phys. Rev. B 2005, 72, 201301(R).

29

Plumhof, J. D.; Stöferle, T.; Mai, L. J.; Scherf, U.; Mahrt, R. F. Room-temperature bose–einstein condensation of cavity exciton– polaritons in a polymer. Nat. Mater. 2014, 13, 247–252.

30

Flatten, L. C.; Coles, D. M.; He, Z. Y.; Lidzey, D. G.; Taylor, R. A.; Warner, J. H.; Smith, J. M. Electrically tunable organic–inorganic hybrid polaritons with monolayer WS2. Nat. Commun. 2017, 8, 14097.

31

Sidler, M.; Back, P.; Cotlet, O.; Srivastava, A.; Fink, T.; Kroner, M.; Demler, E.; Imamoglu, A. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat. Phys. 2017, 13, 255–261.

32

Barachati, F.; Fieramosca, A.; Hafezian, S.; Gu, J.; Chakraborty, B.; Ballarini, D.; Martinu, L.; Menon, V.; Sanvitto, D.; Kéna-Cohen, S. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 2018, 13, 906–909.

33

Christmann, G.; Butté, R.; Feltin, E.; Mouti, A.; Stadelmann, P. A.; Castiglia, A.; Carlin, J. F.; Grandjean, N. Large vacuum Rabi splitting in a multiple quantum well GaN-based microcavity in the strong-coupling regime. Phys. Rev. B 2008, 77, 085310.

34

Biancalana, F.; Mouchliadis, L.; Creatore, C.; Osborne, S.; Langbein, W. Microcavity polaritonlike dispersion doublet in resonant Bragg gratings. Phys. Rev. B 2009, 80, 121306(R).

35

Lagois, J.; Fischer, B. Experimental observation of surface exciton polaritons. Phys. Rev. Lett. 1976, 36, 680–683.

36

Hirabayashi, I.; Tokura, Y.; Koda, T. Surface exciton polariton in ZnO. J. Phys. Soc. Jpn. 1982, 51, 2934–2946.

37

Lagois, J.; Fischer, B. Dispersion theory of surface-exciton polaritons. Phys. Rev. B 1978, 17, 3814–3824.

38

Khitrova, G.; Gibbs, H. M.; Jahnke, F.; Kira, M.; Koch, S. W. Nonlinear optics of normal-mode-coupling semiconductor microcavities. Rev. Mod. Phys. 1999, 71, 1591–1639.

39
Kalt, H.; Klingshirn, C. F. Oscillator model of strong light-matter coupling. In Semiconductor optics 1: Linear optical properties of semiconductors. Kalt, H.; Klingshirn, C. F., Eds.; Springer International Publishing: Cham, 2019; pp 81–100.https://doi.org/10.1007/978-3-030-24152-0_7
DOI
40

Reithmaier, J. P.; Sęk, G.; Löffler, A.; Hofmann, C.; Kuhn, S.; Reitzenstein, S.; Keldysh, L. V.; Kulakovskii, V. D.; Reinecke, T. L.; Forchel, A. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 2004, 432, 197–200.

41

Andreani, L. C.; Panzarini, G.; Gérard, J. M. Strong-coupling regime for quantum boxes in pillar microcavities: Theory. Phys. Rev. B 1999, 60, 13276–13279.

42

Khitrova, G.; Gibbs, H. M.; Kira, M.; Koch, S. W.; Scherer, A. Vacuum Rabi splitting in semiconductors. Nat. Phys. 2006, 2, 81–90.

File
12274_2021_3691_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2021
Revised: 03 June 2021
Accepted: 16 June 2021
Published: 19 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank the support of the Ministry of Education of Singapore (MOE 2019-T2-1-044), Singapore National Research Foundation under the Competitive Research Programs (No. NRF-CRP-21- 2018-0007), the Fundamental Research Funds for the Central Universities of China, National Natural Science Foundation of China (Nos. 61904151 and 51173081), Natural Science Foundation of Shaanxi (No. 2020JM-108), Joint Research Funds of Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLH- Z-020), Ministry of Education of China (IRT1148), and Zhejiang Provincial Natural Science Foundation of China (No. LGG19F040003).

Return