Journal Home > Volume 15 , Issue 2

The reticular chemistry strategy presents a powerful molecule-design tool to tailor the physical and chemical properties of metal–organic framework (MOF). In this work, we for the first time investigated the effect of organic ligands on the radionuclide sequestration (TcO4) of thorium–organic framework. Through a coordination modulation technique, two novel isoreticular thorium–organic frameworks, namely Th-MOF-67 and Th-MOF-68, were obtained. Relative to the antetype MOF of Th-MOF-66 that shows extremely low uptake of ReO4 (a chemical surrogate of radioactive TcO4), the isoreticular MOFs of Th-MOF-67 and Th-MOF-68 enable ultrahigh uptake of ReO4, giving an impressively 36.8-fold or 56-fold enhancement, respectively. The adsorption capacity of Th-MOF-68 is as high as 560 mg/g, exceeding most reported adsorbents for such use. The mechanism for such exceptional outstanding performance, as unveiled by both the single crystal X-ray diffraction and theoretical calculation, is due to coordination interaction for Th-MOF-67, when a tetrazolate ligand was used, or a combined effect from both coordination interaction and anion-exchange for Th-MOF-68, if using a triazolate ligand.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational tuning of thorium–organic frameworks by reticular chemistry for boosting radionuclide sequestration

Show Author's information Han Feng§Xiaohong Xiong§Lele GongHuiping ZhangYing XuXuefeng FengFeng Luo( )
School of Chemistry Biology and Materials Science East China University of TechnologyNanchang 330013 China

§ Han Feng and Xiaohong Xiong contributed equally to this work.

Abstract

The reticular chemistry strategy presents a powerful molecule-design tool to tailor the physical and chemical properties of metal–organic framework (MOF). In this work, we for the first time investigated the effect of organic ligands on the radionuclide sequestration (TcO4) of thorium–organic framework. Through a coordination modulation technique, two novel isoreticular thorium–organic frameworks, namely Th-MOF-67 and Th-MOF-68, were obtained. Relative to the antetype MOF of Th-MOF-66 that shows extremely low uptake of ReO4 (a chemical surrogate of radioactive TcO4), the isoreticular MOFs of Th-MOF-67 and Th-MOF-68 enable ultrahigh uptake of ReO4, giving an impressively 36.8-fold or 56-fold enhancement, respectively. The adsorption capacity of Th-MOF-68 is as high as 560 mg/g, exceeding most reported adsorbents for such use. The mechanism for such exceptional outstanding performance, as unveiled by both the single crystal X-ray diffraction and theoretical calculation, is due to coordination interaction for Th-MOF-67, when a tetrazolate ligand was used, or a combined effect from both coordination interaction and anion-exchange for Th-MOF-68, if using a triazolate ligand.

Keywords: anion exchange, ligand effect, thorium–organic framework, defect site, radionuclide sequestration

References(61)

1

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

2

Katayev, E. A.; Kolesnikov, G. V.; Sessler, J. L. Molecular recognition of pertechnetate and perrhenate. Chem. Soc. Rev. 2009, 38, 1572– 1586.

3

Banerjee, D.; Kim, D.; Schweiger, M. J.; Kruger, A. A.; Thallapally, P. K. Removal of TcO4 ions from solution: materials and future outlook. Chem. Soc. Rev. 2016, 45, 2724–2739.

4

Kaner, R. B.; Gilman, J. J.; Tolbert, S. H. Materials science- designing superhard materials. Science 2005, 308, 1268–1269.

5

Bonnesen, P. V.; Brown, G. M.; Alexandratos, S. D.; Bavoux, L. B.; Presley, D. J.; Patel, V.; Ober, R.; Moyer, B. A. Development of bifunctional anion-exchange resins with improved selectivity and sorptive kinetics for pertechnetate: batch-equilibrium experiments. Environ. Sci. Technol. 2000, 34, 3761–3766.

6

Lee, M. S.; Um, W.; Wang, G. H.; Kruger, A. A.; Lukens, W. W.; Rousseau, R.; Glezakou, V. A. Impeding 99Tc(Ⅳ) mobility in novel waste forms. Nat. Commun. 2016, 7, 12067.

7
IAEA. Nuclear Power Reactors in the World (2018 Edition); International Atomic Energy Agency (IAEA): Vienna, Austria, 2018.
8

Olfs, H. W.; Torres-Dorante, L. O.; Eckelt, R.; Kosslick, H. Comparison of different synthesis routes for Mg-Al layered double hydroxides (LDH): characterization of the structural phases and anion exchange properties. Appl. Clay Sci. 2009, 43, 459–464.

9

Lin, J.; Zhu, L.; Yue, Z. H.; Yang, C.; Liu, W.; Albrecht-Schmitt, T. E.; Wang, J. Q.; Wang, S. A. [Ln6O8] cluster-encapsulating polyplumbites as new polyoxometalate members and record inorganic anion-exchange materials for ReO4 sequestration. Adv. Sci. 2019, 6, 1900381.

10

Wang, S. A.; Alekseev, E. V.; Diwu, J.; Casey, W. H.; Phillips, B. L.; Depmeier, W.; Albrecht-Schmitt, T. E. NDTB-1: a supertetrahedral cationic framework that removes TcO4 from solution. Angew. Chem., Int. Ed. 2010, 49, 1057–1060.

11

Wang, S. A.; Yu, P.; Purse, B. A.; Orta, M. J.; Diwu, J.; Casey, W. H.; Phillips, B. L.; Alekseev, E. V.; Depmeier, W.; Hobbs, D. T. et al. Selectivity, kinetics, and efficiency of reversible anion exchange with TcO4 in a supertetrahedral cationic framework. Adv. Funct. Mater. 2012, 22, 2241–2250.

12

Xiong, C. H.; Yao, C. P.; Wu, X M. Adsorption of rhenium(Ⅶ) on 4-amino-1, 2, 4-triazole resin. Hydrometallurgy 2008, 90, 221–226.

13

Freye, S.; Michel, R.; Stalke, D.; Pawliczek, M.; Frauendorf, H.; Clever, G. H. Template control over dimerization and guest selectivity of interpenetrated coordination cages. J. Am. Chem. Soc. 2013, 135, 8476–8479.

14

Jordan, J. H.; Gibb, C. L. D.; Wishard, A.; Pham, T.; Gibb, B. C. Ion-hydrocarbon and/or ion-ion interactions: direct and reverse hofmeister effects in a synthetic host. J. Am. Chem. Soc. 2018, 140, 4092–4099.

15

Mollick, S.; Fajal, S.; Saurabh, S.; Mahato, D.; Ghosh, S. K. Nanotrap grafted anion exchangeable hybrid materials for efficient removal of toxic oxoanions from water. ACS Cent. Sci. 2020, 6, 1534–1541.

16

Zhang, D. W.; Ronson, T, K.; Mosquera, J.; Martinez, A.; Nitschke, J. R. Selective anion extraction and recovery using a Fe4L4 cage. Angew. Chem., Int. Ed. 2018, 57, 3717–3721.

17

Alberto, R.; Bergamaschi, G.; Braband, H.; Fox, T.; Amendola, V. 99TcO4: selective recognition and trapping in aqueous solution. Angew. Chem., Int. Ed. 2012, 51, 9772–9776.

18

Pike, S. J.; Hutchinson, J. J.; Hunter, C. A. H-bond acceptor parameters for anions. J. Am. Chem. Soc. 2017, 139, 6700–6706.

19

Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

20

Chen, K. J.; Madden, D. G.; Mukherjee, S.; Pham, T.; Forrest, K. A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q. Y.; Zaworotko, M. J. Synergistic sorbent separation for one-step ethylene purification from a four-component mixture. Science 2019, 366, 241–246.

21

Li, J. R.; Kuppler, R. J.; Zhou, H. C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504.

22

Lin, R. B.; Xiang, S. C.; Zhou, W.; Chen, B. L. Microporous metal- organic framework materials for gas separation. Chem 2020, 6, 337–363.

23

Niu, Z.; Cui, X. L.; Pham, T.; Lan, P. C.; Xing, H. B.; Forrest, K. A.; Wojtas, L.; Space, B.; Ma, S. Q. A Metal-organic framework based methane nano-trap for the capture of coal-mine methane. Angew. Chem., Int. Ed. 2019, 58, 10138–10141.

24

Peng, Y. L.; Pham, T.; Li, P. F.; Wang, T.; Chen, Y.; Chen, K. J.; Forrest, K. A.; Space, B.; Cheng, P.; Zaworotko, M. J. et al. Robust ultramicroporous metal-organic frameworks with benchmark affinity for acetylene. Angew. Chem., Int. Ed. 2018, 57, 10971–10975.

25

Zhang, J. P.; Zhou, H. L.; Zhou, D. D.; Liao, P. Q.; Chen, X. M. Controlling flexibility of metal-organic frameworks. Natl. Sci. Rev. 2018, 5, 907–919.

26

Wang, B.; Zhang, X.; Huang, H. L.; Zhang, Z. J.; Yildirim, T.; Zhou, W.; Xiang, S. C.; Chen, B. L. A microporous aluminum-based metal- organic framework for high methane, hydrogen, and carbon dioxide storage. Nano Res. 2021, 14, 507–511.

27

Hou, B. S.; Qin, C.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Stepwise construction of multivariate metal-organic frameworks from a predesigned Zr16 cluster. CCS Chem. 2021, 3, 287–293.

28

Yin, M. J.; Krishna, R.; Wang, W. J.; Yuan, D. Q.; Fan, Y. L.; Feng, X. F.; Wang, L.; Luo, F. A [Th8Co8] nanocage-based Metal-Organic Framework with extremely narrow window but flexible nature enabling dual-sieving effect for both isotope and isomer separation. CCS Chem. 2021, 3, 1115–1126.

29

Gong, W.; Chen, X.; Jiang, H.; Chu, D. D.; Cui, Y.; Liu, Y. Highly stable Zr(Ⅳ)-based metal-organic frameworks with chiral phosphoric acids for catalytic asymmetric tandem reactions. J. Am. Chem. Soc. 2019, 141, 7498–7508.

30

Luo, F.; Yan, C. S.; Dang, L. L.; Krishna, R.; Zhou, W.; Wu, H.; Dong, X. L.; Han, Y.; Hu, T. L.; O'keeffe, M. et al. UTSA-74: a MOF-74 isomer with two accessible binding sites per metal center for highly selective gas separation. J. Am. Chem. Soc. 2016, 138, 5678–5684.

31

Wang, X. F.; Chen, Y. Y.; Song, L. P.; Fang, Z.; Zhang, J.; Shi, F. N.; Lin, Y. W.; Sun, Y. K.; Zhang, Y. B.; Rocha, J. Cooperative capture of uranyl ions by a carbonyl-bearing hierarchical-porous Cu–organic framework. Angew. Chem., Int. Ed. 2019, 58, 18808–18812.

32

Zhu, L.; Sheng, D. P.; Xu, C.; Dai, X.; Silver, M. A.; Li, J.; Li, P.; Wang, Y. X.; Wang, Y. L.; Chen, L. H. et al. Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal-organic framework. J. Am. Chem. Soc. 2017, 139, 14873–14876.

33

Sheng, D. P.; Zhu, L.; Xu, C.; Xiao, C. L.; Wang, Y. L.; Wang, Y. X.; Chen, L. H.; Diwu, J.; Chen, J.; Chai, Z. F. et al. Efficient and selective uptake of TcO4 by a cationic metal-organic framework material with open Ag+ sites. Environ. Sci. Technol. 2017, 51, 3471- 3479.

34

Zhu, L.; Xiao, C. L.; Dai, X.; Li, J.; Gui, D. X.; Sheng, D. P.; Chen, L. H.; Zhou, R. H.; Chai, Z. F.; Albrecht-Schmitt, T. E. et al. Exceptional perrhenate/pertechnetate uptake and subsequent immobilization by a low-dimensional cationic coordination polymer: overcoming the hofmeister bias selectivity. Environ. Sci. Technol. Lett. 2017, 4, 316–322.

35

Li, Y. X.; Yang, Z. X.; Wang, Y. L.; Bai, Z. L.; Zheng, T.; Dai, X.; Liu, S. T.; Gui, D. X.; Liu, W.; Chen, M. et al. A mesoporous cationic thorium-organic framework that rapidly traps anionic persistent organic pollutants. Nat. Commun. 2017, 8, 1354.

36

Drout, R. J.; Otake, K.; Howarth, A. J.; Islamoglu, T.; Zhu, L.; Xiao, C. L.; Wang, S. A.; Farha, O. K. Efficient capture of perrhenate and pertechnetate by a mesoporous Zr metal-organic framework and examination of anion binding motifs. Chem. Mater. 2018, 30, 1277– 1284.

37

Sheng, D. P.; Zhu, L.; Dai, X.; Xu, C.; Li, P.; Pearce, C. I.; Xiao, C. L.; Chen, J.; Zhou, R. H.; Duan, T. et al. Successful decontamination of 99TcO4 in groundwater at legacy nuclear sites by a cationic metal- organic framework with hydrophobic pockets. Angew. Chem., Int. Ed. 2019, 58, 4968–4972.

38

Mei, L.; Li, F. Z.; Lan, J. H.; Wang, C. Z.; Xu, C.; Deng, H.; Wu, Q. Y.; Hu, K. Q.; Wang, L.; Chai, Z. F. et al. Anion-adaptive crystalline cationic material for 99TcO4 trapping. Nat. Commun. 2019, 10, 1532.

39

Li, C. P.; Zhou, H.; Chen, J.; Wang, J. J.; Du, M.; Zhou, W. Z. A highly efficient coordination polymer for selective trapping and sensing of perrhenate/pertechnetate. ACS Appl. Mater. Interfaces 2020, 12, 15246–15254.

40

Li, C. P.; Zhou, H.; Wang, J. J.; Liu, B. L.; Wang, S.; Yang, X.; Wang, Z. L.; Liu, C. S.; Du, M.; Zhou, W. Z. Mechanism-property correlation in coordination polymer crystals toward design of a superior sorbent. ACS Appl. Mater. Interfaces 2019, 11, 42375–42384.

41

Rapti, S.; Diamantis, S. A.; Dafnomili, A.; Pournara, A.; Skliri, E.; Armatas, G. S.; Tsipis, A. C.; Spanopoulos, I.; Malliakas, C. D.; Kanatzidis, M. G. et al. Exceptional TcO4 sorption capacity and highly efficient ReO4 luminescence sensing by Zr4+ MOFs. J. Mater. Chem. A 2018, 6, 20813–20821.

42

Banerjee, D.; Xu, W.; Nie, Z.; Johnson, L. E. V.; Coghlan, C.; Sushko, M. L.; Kim, D.; Schweiger, M. J.; Kruger, A. A.; Doonan, C. J. et al. Zirconium-based metal-organic framework for removal of perrhenate from water. Inorg. Chem. 2016, 55, 8241–8243.

43

Wang, X. N.; Zhao, Y. M.; Kirchon, A.; Li, B.; Zhou, H. C. Regulating the topologies of zirconium-organic frameworks for a crystal sponge applicable to inorganic matter. Inorg. Chem. 2020, 59, 11940–11944.

44

Fei, H. H.; Rogow, D. L.; Oliver, S. R. J. Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(Ⅰ) and Ag(Ⅰ). J. Am. Chem. Soc. 2010, 132, 7202–7209.

45

Xu, H.; Cao, C. S.; Hu, H. S.; Wang, S. B.; Liu, J. C.; Cheng, P.; Kaltsoyannis, N.; Li, J.; Zhao, B. High uptake of ReO4 and CO2 conversion by a radiation-resistant thorium-nickle [Th48Ni6] nanocage-based metal-organic framework. Angew. Chem., Int. Ed. 2019, 58, 6022–6027.

46

Liu, Z. W.; Han, B. H. Evaluation of an imidazolium-based porous organic polymer as radioactive waste scavenger. Environ. Sci. Technol. 2020, 54, 216–224.

47

Banerjee, D.; Elsaidi, S. K.; Aguila, B.; Li, B. Y.; Kim, D.; Schweiger, M. J.; Kruger, A. A.; Doonan, C. J.; Ma, S. Q.; Thallapally, P. K. Removal of pertechnetate-related oxyanions from solution using functionalized hierarchical porous frameworks. Chem. Eur. J. 2016, 22, 17581–17584.

48

Li, J.; Dai, X.; Zhu, L.; Xu, C.; Zhang, D.; Silver, M. A.; Li, P.; Chen, L. H.; Li, Y. Z.; Zuo, D. W. et al. 99TcO4 remediation by a cationic polymeric network. Nat. Commun. 2018, 9, 3007.

49

He, L. W.; Liu, S. T.; Chen, L.; Dai, X.; Li, J.; Zhang, M. X.; Ma, F. Y.; Zhang, C.; Yang, Z. X.; Zhou, R. H. et al. Mechanism unravelling for ultrafast and selective 99TcO4 uptake by a radiation-resistant cationic covalent organic framework: a combined radiological experiment and molecular dynamics simulation study. Chem. Sci. 2019, 10, 4293–4305.

50

Sun, Q.; Zhu, L.; Aguila, B.; Thallapally, P. K.; Xu, C.; Chen, J.; Wang, S.; Rogers, D.; Ma, S. Q. Optimizing radionuclide sequestration in anion nanotraps with record pertechnetate sorption. Nat. Commun. 2019, 10, 1646.

51

Wang, Y.; Xie, M. S.; Lan, J. H.; Yuan, L. Y.; Yu, J. P.; Li, J. Q.; Peng, J.; Chai, Z. F.; Gibson, J. K.; Zhai, M. L. et al. Radiation controllable synthesis of robust covalent organic framework conjugates for efficient dynamic column extraction of 99TcO4. Chem 2020, 6, 2796-2809.

52

Shen, N. N.; Yang, Z. X.; Liu, S. T.; Dai, X.; Xiao, C. L.; Taylor- Pashow, K.; Li, D. E.; Yang, C.; Li, J.; Zhang, Y. G. et al. 99TcO4 removal from legacy defense nuclear waste by an alkaline-stable 2D cationic metal organic framework. Nat. Commun. 2020, 11, 5571.

53

Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. A New zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 2008, 130, 13850–13851.

54

Li, Z. J.; Ju, Y.; Yu, B. W.; Wu, X. L.; Lu, H. J.; Li, Y. X.; Zhou, J.; Guo, X. F.; Zhang, Z. H.; Lin, J. et al. Modulated synthesis and isoreticular expansion of Th-MOFs with record high pore volume and surface area for iodine adsorption. Chem. Commun. 2020, 56, 6715– 6718.

55

Wang, Y. L.; Liu, W.; Bai, Z. L.; Zheng, T.; Silver, M. A.; Li, Y. X.; Wang, Y. X.; Wang, X.; Diwu, J.; Chai, Z. F. et al. Employing an unsaturated Th4+ site in a porous thorium-organic framework for Kr/Xe uptake and separation. Angew. Chem., Int. Ed. 2018, 57, 5783– 5787.

56

Falaise, C.; Charles, J. S.; Volkringer, C.; Loiseau, T. Thorium terephthalates coordination polymers synthesized in solvothermal DMF/H2O system. Inorg. Chem. 2015, 54, 2235–2242.

57

Xu, Z. Z.; Xiong, X. H.; Xiong, J. B.; Krishna, R.; Li, L. B.; Fan, Y. L.; Luo, F.; Chen, B. L. A robust Th-Azole framework for highly efficient purification of C2H4 from a C2H4/C2H2/C2H6 mixture. Nat. Commun. 2020, 11, 3163.

58

Li, J.; Zhu, L.; Xiao, C. L.; Chen, L. H.; Chai, Z. F.; Wang, S A. efficient uptake of perrhenate/pertechnenate from aqueous solutions by the bifunctional anion-exchange resin. Radiochim. Acta 2018, 106, 581–591.

59

Shu, Z. N.; Yang, M. H. Adsorption of rhenium(Ⅶ) with anion exchange resin D318. Chin. J. Chem. Eng. 2010, 18, 372–376.

60

Gao, Y.; Chen, K.; Tan, X. L.; Wang, X. L.; Alsaedi, A.; Hayat, T.; Chen, C. L. Interaction mechanism of Re(Ⅶ) with zirconium dioxide nanoparticles archored onto reduced graphene oxides. ACS Sustainable Chem. Eng. 2017, 5, 2163–2171.

61

Xiong Y, Cui, X. R.; Zhang, P.; Wang, Y. J.; Lou, Z. N.; Shan, W. J. Improving Re(Ⅶ) adsorption on diisobutylamine-functionalized graphene oxide. ACS Sustainable Chem. Eng. 2017, 5, 1010–1018.

File
12274_2021_3690_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2021
Revised: 19 May 2021
Accepted: 16 June 2021
Published: 28 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported financially by the Natural Science Foundation of Jiangxi Province of China (No. 20181ACB20003), the Training Program for Academic and Technical Leaders of Major Disciplines in Jiangxi Province (No. 20194BCJ22010), and the National Natural Science Foundations of China (Nos. 21966002 and 21871047).

Return