Journal Home > Volume 14 , Issue 11

Two-photon fluorescence (TPF) ellipsoid formed by a focused femtosecond laser into luminescent media serves as a fundamental pixel for TPF spatiotemporal imaging. Visualizing spatiotemporal evolution of the TPF ellipsoid itself in a selected luminescent medium is important for correctly reconstructing and interpreting spatiotemporal information of imaged targets. Here, we report a new spatiotemporal sectioning technique with a luminescent CsPbBr3 nanosheet and visualize the spatiotemporal evolution of TPF ellipsoid along the axial direction. Time-resolved axial lengths of TPF ellipsoids turn out to broaden nonlinearly with a turning point at about 600 ps. By comparison experiments, observed phenomena are attributed to photocarrier trapping and TPF photon recycling processes within CsPbBr3 nanosheets. The spatiotemporal sectioning technique is expected to be widely applicable, which will ignite a plethora of investigations and applications utilizing TPF ellipsoid.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spatiotemporal sectioning of two-photon fluorescence ellipsoid with a CsPbBr3 nanosheet

Show Author's information Yizhi Zhu§Jinping Chen§Qiannan Cui( )Heng GuoZhuxin LiZengliang ShiChunxiang Xu( )
State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

§ Yizhi Zhu and Jinping Chen contributed equally to this work.

Abstract

Two-photon fluorescence (TPF) ellipsoid formed by a focused femtosecond laser into luminescent media serves as a fundamental pixel for TPF spatiotemporal imaging. Visualizing spatiotemporal evolution of the TPF ellipsoid itself in a selected luminescent medium is important for correctly reconstructing and interpreting spatiotemporal information of imaged targets. Here, we report a new spatiotemporal sectioning technique with a luminescent CsPbBr3 nanosheet and visualize the spatiotemporal evolution of TPF ellipsoid along the axial direction. Time-resolved axial lengths of TPF ellipsoids turn out to broaden nonlinearly with a turning point at about 600 ps. By comparison experiments, observed phenomena are attributed to photocarrier trapping and TPF photon recycling processes within CsPbBr3 nanosheets. The spatiotemporal sectioning technique is expected to be widely applicable, which will ignite a plethora of investigations and applications utilizing TPF ellipsoid.

Keywords: photon recycling, spatiotemporal sectioning, two-photon fluorescence ellipsoid, CsPbBr3 nanosheet, photocarrier trapping

References(52)

1

Denk, W.; Strickler, J. H.; Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 1990, 248, 73–76.

2

Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.

3

Young, M. D.; Field, J. J.; Sheetz, K. E.; Bartels, R. A.; Squier, J. A pragmatic guide to multiphoton microscope design. Adv. Opt. Photonics 2015, 7, 276–378.

4

Ntziachristos, V. Going deeper than microscopy: The optical imaging frontier in biology. Nat. Methods 2010, 7, 603–614.

5

Qi, J.; Sun, C. W.; Li, D. Y.; Zhang, H. Q.; Yu, W. B.; Zebibula, A.; Lam, J. W. Y.; Xi, W.; Zhu, L.; Cai, F. H. et al. Aggregation-induced emission luminogen with near-infrared-Ⅱ excitation and near-infrared-Ⅰ emission for ultradeep intravital two-photon microscopy. ACS Nano 2018, 12, 7936–7945.

6

Beaulieu, D. R.; Davison, I. G.; Kiliç, K.; Bifano, T. G.; Mertz, J. Simultaneous multiplane imaging with reverberation two-photon microscopy. Nat. Methods 2020, 17, 283–286.

7

Bastiaens, P. I. H.; Squire, A. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 1999, 9, 48–52.

8

Berndt, M.; Lorenz, M.; Enderlein, J.; Diez, S. Axial nanometer distances measured by fluorescence lifetime imaging microscopy. Nano Lett. 2010, 10, 1497–1500.

9

Orte, A.; Alvarez-Pez, J. M.; Ruedas-Rama, M. J. Fluorescence lifetime imaging microscopy for the detection of intracellular pH with quantum dot nanosensors. ACS Nano 2013, 7, 6387–6395.

10

Zheng, K. Y.; Jensen, T. P.; Rusakov, D. A. Monitoring intracellular nanomolar calcium using fluorescence lifetime imaging. Nat. Protoc. 2018, 13, 581–597.

11

Camborde, L.; Jauneau, A.; Brière, C.; Deslandes, L.; Dumas, B.; Gaulin, E. Detection of nucleic acid-protein interactions in plant leaves using fluorescence lifetime imaging microscopy. Nat. Protoc. 2017, 12, 1933–1950.

12

Niehörster, T.; Löschberger, A.; Gregor, I.; Krämer, B.; Rahn, H. J.; Patting, M.; Koberling, F.; Enderlein, J.; Sauer, M. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat. Methods 2016, 13, 257–262.

13

Karpf, S.; Riche, C. T.; Di Carlo, D.; Goel, A.; Zeiger, W. A.; Suresh, A.; Portera-Cailliau, C.; Jalali, B. Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nat. Commun. 2020, 11, 2062.

14

Rumi, M.; Perry, J. W. Two-photon absorption: An overview of measurements and principles. Adv. Opt. Photonics 2010, 2, 451–518.

15

Cui, Q. N.; Li, Y. Y.; Chang, J. H.; Zhao, H.; Xu, C. X. Temporally resolving synchronous degenerate and nondegenerate two-photon absorption in 2D semiconducting monolayers. Laser Photonics Rev. 2019, 13, 1800225.

16

Saouma, F. O.; Stoumpos, C. C.; Kanatzidis, M. G.; Kim, Y. S.; Jang, J. I. Multiphoton absorption order of CsPbBr3 As determined by wavelength-dependent nonlinear optical spectroscopy. J. Phys. Chem. Lett. 2017, 8, 4912–4917.

17

Lu, W. G.; Chen, C.; Han, D. B.; Yao, L. H.; Han, J. B.; Zhong, H. Z.; Wang, Y. T. Nonlinear optical properties of colloidal CH3NH3PbBr3 and CsPbBr3 quantum dots: a comparison study using Z-scan technique. Adv. Opt. Mater. 2016, 4, 1732–1737.

18

Xu, Y. Q.; Chen, Q.; Zhang, C. F.; Wang, R.; Wu, H.; Zhang, X. Y.; Xing, G. C.; Yu, W. W.; Wang, X. Y.; Zhang, Y. et al. Two-photon- pumped perovskite semiconductor nanocrystal lasers. J. Am. Chem. Soc. 2016, 138, 3761–3768.

19

Wang, S. L.; Yang, F.; Zhu, J. R.; Cao, Q. X.; Zhong, Y. G.; Wang, A. C.; Du, W. N.; Liu, X. F. Growth of metal halide perovskite materials. Sci. China Mater. 2020, 63, 1438–1463.

20

Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.

21

Zhang, S.; Shang, Q. Y.; Du, W. N.; Shi, J.; Wu, Z. Y.; Mi, Y.; Chen, J.; Liu, F. J.; Li, Y. Z.; Liu, M. et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater. 2018, 6, 1701032.

22

Jeong, M. Y.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

23

Jia, Y. F.; Kerner, R. A.; Grede, A. J.; Rand, B. P.; Giebink, N. C. Continuous-wave lasing in an organic–inorganic lead halide perovskite semiconductor. Nat. Photonics 2017, 11, 784–788.

24

Shang, Q. Y.; Li, M. L.; Zhao, L. Y.; Chen, D. W.; Zhang, S.; Chen, S. L.; Gao, P.; Shen, C.; Xing, J.; Xing, G. C. et al. Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett. 2020, 20, 6636–6643.

25

Lin, K. B.; Xing, J.; Quan, L. N.; De Arquer, F. P. G.; Gong, X. W.; Lu, J. X.; Xie, L. Q.; Zhao, W. J.; Zhang, D.; Yan, C. Z. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature 2018, 562, 245–248.

26

Rubart, M. Two-photon microscopy of cells and tissue. Circ. Res. 2004, 95, 1154–1166.

27

Polyzos, I.; Tsigaridas, G.; Fakis, M.; Parthenios, J.; Fragos, A.; Giannetas, V.; Persephonis, P.; Mikroyannidis, J. Examination of the spatial distribution of dyes and polymers in thin films by two- photon microscopy. Monatsh. Chem. 2001, 132, 169–175.

28

Soeller, C.; Cannell, M. B. Two-photon microscopy: Imaging in scattering samples and three-dimensionally resolved flash photolysis. Microsc. Res. Techniq. 1999, 47, 182–195.

DOI
29

Mannino, G.; Deretzis, I.; Smecca, E.; La Magna, A.; Alberti, A.; Ceratti, D.; Cahen, D. Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 2020, 11, 2490–2496.

30

Tao, S. X.; Schmidt, I.; Brocks, G.; Jiang, J. K.; Tranca, I.; Meerholz, K.; Olthof, S. Absolute energy level positions in tin-and lead-based halide perovskites. Nat. Commun. 2019, 10, 2560.

31

Walters, G.; Sutherland, B. R.; Hoogland, S.; Shi, D.; Comin, R.; Sellan, D. P.; Bakr, O. M.; Sargent, E. H. Two-photon absorption in organometallic bromide perovskites. ACS Nano 2015, 9, 9340–9346.

32

Wei, T. C.; Mokkapati, S.; Li, T. Y.; Lin, C. H.; Lin, G. R.; Jagadish, C.; He, J. H. Nonlinear absorption applications of CH3NH3PbBr3 perovskite crystals. Adv. Funct. Mater. 2018, 28, 1707175.

33

Wang, Y.; Li, X. M.; Zhao, X.; Xiao, L.; Zeng, H. B.; Sun, H. D. Nonlinear absorption and low-threshold multiphoton pumped stimulated emission from all-inorganic perovskite nanocrystals. Nano Lett. 2016, 16, 448–453.

34

Dai, J.; Xu, C. X.; Sun, L. X.; Chen, Z. H.; Guo, J. Y.; Li, Z. H. Multiphoton absorption-induced optical whispering-gallery modes in ZnO microcavities at room temperature. J. Phys. D Appl. Phys. 2010, 44, 025404.

35

Sun, H. B.; Maeda, M.; Takada, K.; Chon, J. W. M.; Gu, M.; Kawata, S. Experimental investigation of single voxels for laser nanofabrication via two-photon photopolymerization. Appl. Phys. Lett. 2003, 83, 819–821.

36

Sun, H. B.; Tanaka, T.; Kawata, S. Three-dimensional focal spots related to two-photon excitation. Appl. Phys. Lett. 2002, 80, 3673– 3675.

37

Sun, H. B.; Takada, K.; Kim, M. S.; Lee, K. S; Kawata, S. Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl. Phys. Lett. 2003, 83, 1104–1106.

38
Kubitscheck, U. Principles of light microscopy. In Fluorescence Microscopy: From Principles to Biological Applications. Masters, B. R., Ed.; Wiley: Bonn, 2013; pp 33–95.https://doi.org/10.1002/9783527671595
DOI
39

Eaton, S. W.; Lai, M.; Gibson, N. A.; Wong, A. B.; Dou, L.; Ma, J.; Wang, L. W.; Leone, S. R.; Yang, P. D. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA 2016, 113, 1993–1998.

40

Dong, Q. F.; Fang Y. J.; Shao Y. C.; Mulligan, P.; Qiu, J.; Cao L.; Huang J. S. Electron-hole diffusion lengths > 175 μm in solution- grown CH3NH3PbI3 single crystals. Science 2015, 347, 967–970.

41

Cui, Q. N.; Ceballos, F.; Kumar, N.; Zhao, H. Transient absorption microscopy of monolayer and bulk WSe2. ACS Nano 2014, 8, 2970–2976.

42

Lu, N. D.; Wang, J. W.; Geng, D.; Li, L.; Liu, M. Understanding the transport mechanism of organic-inorganic perovskite solar cells: the effect of exciton or free-charge on diffusion length. Org. Electron. 2019, 66, 163–168.

43

Crothers, T. W.; Milot, R. L.; Patel, J. B.; Parrott, E. S.; Schlipf, J.; Müller-Buschbaum, P.; Johnston, M. B.; Herz, L. M. Photon reabsorption masks intrinsic bimolecular charge-carrier recombination in CH3NH3PbI3 perovskite. Nano Lett. 2017, 17, 5782–5789.

44

Motti, S. G.; Crothers, T.; Yang, R.; Cao, Y.; Li, R. Z.; Johnston, M. B.; Wang, J. P.; Herz, L. M. Heterogeneous photon recycling and charge diffusion enhance charge transport in quasi-2D lead-halide perovskite films. Nano Lett. 2019, 19, 3953–3960.

45

Diab, H.; Arnold, C.; Lédée, F.; Trippé-Allard, G.; Delport, G.; Vilar, C.; Bretenaker, F.; Barjon, J.; Lauret, J. S; Deleporte, E. et al. Impact of reabsorption on the emission spectra and recombination dynamics of hybrid perovskite single crystals. J. Phys. Chem. Lett. 2017, 8, 2977–2983.

46

Zhu, Y. Z.; Cui, Q. N.; Chen, J. P.; Chen, F.; Shi, Z. L.; Zhao, X. W.; Xu, C. X. Inhomogeneous trap-state-mediated ultrafast photocarrier dynamics in CsPbBr3 microplates. ACS Appl. Mater. Interfaces 2021, 13, 6820–6829.

47

Dar, M. I.; Jacopin, G.; Meloni, S.; Mattoni, A.; Arora, N.; Boziki, A.; Zakeeruddin, S. M.; Rothlisberger, U.; Grätzel, M. Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites. Sci. Adv. 2016, 2, e1601156.

48

He, M.; Jiang, Y.; Liu, Q. B.; Luo, Z.; Ouyang, C. X.; Wang, X. X.; Zheng, W. H.; Braun, K.; Meixner, A. J.; Gao, T. G. et al. Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature. Phys. Rev. Appl. 2020, 13, 044072.

49

Socie, E.; Vale, B. R. C.; Burgos-Caminal, A.; Moser, J. E. Direct observation of shallow trap states in thermal equilibrium with band-edge excitons in strongly confined CsPbBr3 perovskite nanoplatelets. Adv. Opt. Mater. 2021, 9, 2001308.

50

Godin, R.; Wang, Y.; Zwijnenburg, M. A.; Tang, J.; Durrant, J. R. Time-resolved spectroscopic investigation of charge trapping in carbon nitrides photocatalysts for hydrogen generation. J. Am. Chem. Soc. 2017, 139, 5216–5224.

51

Gan, Z. X.; Wen, X. M.; Zhou, C. H.; Chen, W. J.; Zheng, F.; Yang, S.; Davis, J. A.; Tapping, P. C.; Kee, T. W.; Zhang, H. et al. Transient energy reservoir in 2D perovskites. Adv. Opt. Mater. 2019, 7, 1900971.

52

Zhao, C. Y.; Tian, W. M.; Liu, J. X.; Sun, Q.; Luo, J. J.; Yuan, H.; Gai, B. D.; Tang, J.; Guo, J. W.; Jin, S. Y. Stable two-photon pumped amplified spontaneous emission from millimeter-sized CsPbBr3 single crystals. J. Phys. Chem. Lett. 2019, 10, 2357–2362.

File
12274_2021_3689_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 April 2021
Revised: 26 May 2021
Accepted: 16 June 2021
Published: 10 July 2021
Issue date: November 2021

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11734005, 61704024, 61821002, and 62075041), Natural Science Foundation of Jiangsu Province (No. BK20170696), the National Key Research and Development Program of China (Nos. 2017YFA0700500 and 2018YFA0209101) and Fundamental Research Funds for the Central Universities (No. 2242021K10009). Q. N. C. gratefully acknowledges the support of Southeast University through Zhishan Young Scholar Fund. The authors thank Dr. Haibo Ding for insightful discussion.

Return