Journal Home > Volume 15 , Issue 2

The control of the Kondo effect is of great interest in single-molecule junction due to its potential applications in spin based electronics. Here, we demonstrate that the Kondo effect is reversibly switched on and off in an iron phthalocyanine (FePc) single-molecule junction by using a superconducting Nb tip. In a scanning tunneling microscope-based Nb-insulator-FePc-Au junction, we achieve a reversible switching between the Kondo dip and inelastic electronic tunneling spectra by simply adjusting the tip-sample distance to tune the tunnel coupling at low temperature. Further approaching the tip leads to the picking up of the molecule to the tip apex, which transfers the geometry of the single-molecule junction into a Nb-FePc-insulator-Au type. As the molecule forms an effective magnetic impurity embedded into the superconducting ground states of the Nb tip, the out-gap Kondo dip switched to an in-gap Yu–Shiba–Rusinov state. Our results open up a new route for manipulating the Kondo effect within a single-molecule junction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reversible switching of Kondo resonance in a single-molecule junction

Show Author's information Yuqing Xing1Hui Chen1,2( )Bin Hu1Yuhan Ye1Werner A. Hofer1Hong-Jun Gao1,2( )
Institute of Physics Chinese Academy of Sciences and University of Chinese Academy of SciencesBeijing 100190 China
Songshan Lake Materials LaboratoryDongguan 523808 China

Abstract

The control of the Kondo effect is of great interest in single-molecule junction due to its potential applications in spin based electronics. Here, we demonstrate that the Kondo effect is reversibly switched on and off in an iron phthalocyanine (FePc) single-molecule junction by using a superconducting Nb tip. In a scanning tunneling microscope-based Nb-insulator-FePc-Au junction, we achieve a reversible switching between the Kondo dip and inelastic electronic tunneling spectra by simply adjusting the tip-sample distance to tune the tunnel coupling at low temperature. Further approaching the tip leads to the picking up of the molecule to the tip apex, which transfers the geometry of the single-molecule junction into a Nb-FePc-insulator-Au type. As the molecule forms an effective magnetic impurity embedded into the superconducting ground states of the Nb tip, the out-gap Kondo dip switched to an in-gap Yu–Shiba–Rusinov state. Our results open up a new route for manipulating the Kondo effect within a single-molecule junction.

Keywords: scanning tunneling microscope, iron phthalocyanine (FePc), superconducting tip, Kondo resonance, inelastic electron tunneling, Yu–Shiba–Rusinov states

References(40)

1

Zhang, J. L.; Zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T. S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022.

2

Ke, G. J.; Duan, C. H.; Huang, F.; Guo, X. F. Electrical and spin switches in single–molecule junctions. InfoMat 2020, 2, 92–112.

3

Schulz, F.; Ijas, M.; Drost, R.; Hamalainen, S. K.; Harju, A.; Seitsonen, A. P.; Liljeroth, P. Many-body transitions in a single molecule visualized by scanning tunnelling microscopy. Nat. Phys. 2015, 11, 229–234.

4

Evers, F.; Korytár, R.; Tewari, S.; Van Ruitenbeek, J. M. Advances and challenges in single–molecule electron transport. Rev. Mod. Phys. 2020, 92, 035001.

5

Perrin, M. L.; Verzijl, C. J. O.; Martin, C. A.; Shaikh, A. J.; Eelkema, R.; Van Esch, J. H.; Van Ruitenbeek, J. M.; Thijssen, J. M.; Van Der Zant, H. S. J.; Dulic, D. Large tunable image-charge effects in single-molecule junctions. Nat. Nanotechnol. 2013, 8, 282–287.

6

Guo, X.; Zhu, Q. H.; Zhou, L. Y.; Yu, W.; Lu, W. G.; Liang, W. J. Evolution and universality of two-stage kondo effect in single manganese phthalocyanine molecule transistors. Nat. Commun. 2021, 12, 1566.

7

Gao, H. J.; Sohlberg, K.; Xue, Z. Q.; Chen, H. Y.; Hou, S. M.; Ma, L. P.; Fang, X. W.; Pang, S. J.; Pennycook, S. J. Reversible, nanometer-scale conductance transitions in an organic complex. Phys. Rev. Lett. 2000, 84, 1780–1783.

8

Gao, H. J.; Gao, L. Scanning tunneling microscopy of functional nanostructures on solid surfaces: Manipulation, self-assembly, and applications. Prog. Surf. Sci. 2010, 85, 28–91.

9

Feng, M.; Gao, L.; Deng, Z. T.; Ji, W.; Guo, X. F.; Du, S. X.; Shi, D. X.; Zhang, D. Q.; Zhu, D. B.; Gao, H. J. Reversible, erasable, and rewritable nanorecording on an H2 rotaxane thin film. J. Am. Chem. Soc. 2007, 129, 2204–2205.

10

Feng, M.; Guo, X. F.; Lin, X.; He, X. B.; Ji, W.; Du, S. X.; Zhang, D. Q.; Zhu, D. B.; Gao, H. J. Stable, reproducible nanorecording on rotaxane thin films. J. Am. Chem. Soc. 2005, 127, 15338–15339.

11

Scott, G. D.; Natelson, D. Kondo resonances in molecular devices. Acs Nano 2010, 4, 3560–3579.

12

Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 1964, 32, 37–49.

13

Parks, J. J.; Champagne, A. R.; Costi, T. A.; Shum, W. W.; Pasupathy, A. N.; Neuscamman, E.; Flores-Torres, S.; Cornaglia, P. S.; Aligia, A. A.; Balseiro, C. A. et al. Mechanical control of spin states in spin-1 molecules and the underscreened kondo effect. Science 2010, 328, 1370–1373.

14

Li, B.; Li, Z. Y.; Yang, J. L.; Hou, J. G. Stm studies of single molecules: Molecular orbital aspects. Chem. Commun. 2011, 47, 2747–2762.

15

Niu, T. C.; Li, A. Exploring single molecules by scanning probe microscopy: Porphyrin and phthalocyanine. J. Phys. Chem. Lett. 2013, 4, 4095–4102.

16

Liu, L. W.; Yang, K.; Jiang, Y. H.; Song, B. Q.; Xiao, W. D.; Li, L. F.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Ouyang, M. et al. Reversible single spin control of individual magnetic molecule by hydrogen atom adsorption. Sci. Rep. 2013, 3, 1210.

17

Gopakumar, T. G.; Tang, H.; Morillo, J.; Berndt, R. Transfer of Cl ligands between adsorbed iron tetraphenylporphyrin molecules. J. Am. Chem. Soc. 2012, 134, 11844–11847.

18

Gu, C. D.; Zhang, J. L.; Zhong, J. Q.; Shen, Q.; Zhou, X.; Yuan, K. D.; Sun, S.; Lian, X.; Ma, Z. R.; Chen, W. Single-molecule imaging of dinitrogen molecule adsorption on individual iron phthalocyanine. Nano Res. 2020, 13, 2393–2398.

19

Li, X. Y.; Zhu, L.; Li, B.; Li, J. C.; Gao, P. F.; Yang, L. Q.; Zhao, A. D.; Luo, Y.; Hou, J. G.; Zheng, X. et al. Molecular molds for regularizing kondo states at atom/metal interfaces. Nat. Commun. 2020, 11, 2566.

20

Zhao, A. D.; Li, Q. X.; Chen, L.; Xiang, H. J.; Wang, W. H.; Pan, S.; Wang, B.; Xiao, X. D.; Yang, J. L.; Hou, J. G. et al. Controlling the kondo effect of an adsorbed magnetic ion through its chemical bonding. Science 2005, 309, 1542–1544.

21

Liu, L. W.; Yang, K.; Jiang, Y. H.; Song, B. Q.; Xiao, W. D.; Song, S. R.; Du, S. X.; Ouyang, M.; Hofer, W. A.; Neto, A. H. C. et al. Revealing the atomic site-dependent g factor within a single magnetic molecule via the extended kondo effect. Phys. Rev. Lett. 2015, 114, 126601.

22

Komeda, T.; Isshiki, H.; Liu, J.; Zhang, Y. F.; Lorente, N.; Katoh, K.; Breedlove, B. K.; Yamashita, M. Observation and electric current control of a local spin in a single-molecule magnet. Nat. Commun. 2011, 2, 217.

23

Yang, K.; Chen, H.; Pope, T.; Hu, Y. B.; Liu, L. W.; Wang, D. F.; Tao, L.; Xiao, W. D.; Fei, X. M.; Zhang, Y. Y. et al. Tunable giant magnetoresistance in a single-molecule junction. Nat. Commun. 2019, 10, 3599.

24

Li, Y.; Kaneko, S.; Fujii, S.; Kiguchi, M. Symmetry of single hydrogen molecular junction with Au, Ag, and Cu electrodes. J. Phys. Chem. C 2015, 119, 19143–19148.

25

Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

26

Liu, S.; Zhang, X. Y.; Luo, W. X.; Wang, Z. X.; Guo, X. F.; Steigerwald, M. L.; Fang, X. H. Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. Angew. Chem., Int. Ed. 2011, 50, 2496–2502.

27

Gao, L.; Ji, W.; Hu, Y. B.; Cheng, Z. H.; Deng, Z. T.; Liu, Q.; Jiang, N.; Lin, X.; Guo, W.; Du, S. X. et al. Site-specific kondo effect at ambient temperatures in iron-based molecules. Phys. Rev. Lett. 2007, 99, 106402.

28

Chen, H.; Pope, T.; Wu, Z. Y.; Wang, D. F.; Tao, L.; Bao, D. L.; Xiao, W. D.; Zhang, J. L.; Zhang, Y. Y.; Du, S. X. et al. Evidence for ultralow-energy vibrations in large organic molecules. Nano Lett. 2017, 17, 4929–4933.

29

Mier, C.; Verlhac, B.; Garnier, L.; Robles, R.; Limot, L.; Lorente, N.; Choi, D. J. Superconducting scanning tunneling microscope tip to reveal sub-millielectronvolt magnetic energy variations on surfaces. J. Phys. Chem. Lett. 2021, 12, 2983–2989.

30

Farinacci, L.; Ahmadi, G.; Reecht, G.; Ruby, M.; Bogdanoff, N.; Peters, O.; Heinrich, B. W.; Von Oppen, F.; Franke, K. J. Tuning the coupling of an individual magnetic impurity to a superconductor: Quantum phase transition and transport. Phys. Rev. Lett. 2018, 121, 196803.

31

Fan, P.; Yang, F. Z.; Qian, G. J.; Chen, H.; Zhang, Y. Y.; Li, G.; Huang, Z. H.; Xing, Y. Q.; Kong, L. Y.; Liu, W. Y. et al. Observation of magnetic adatom-induced majorana vortex and its hybridization with field-induced majorana vortex in an iron-based superconductor. Nat. Commun. 2021, 12, 1348.

32

Zhu, S. Y.; Kong, L. Y.; Cao, L.; Chen, H.; Papaj, M.; Du, S. X.; Xing, Y. Q.; Liu, W. Y.; Wang, D. F.; Shen, C. M. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 2020, 367, 189–192.

33

Verlhac, B.; Bachellier, N.; Garnier, L.; Ormaza, M.; Abufager, P.; Robles, R.; Bocquet, M. L.; Ternes, M.; Lorente, N.; Limot, L. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 2019, 366, 623–627.

34

Bork, J.; Zhang, Y. H.; Diekhöner, L.; Borda, L.; Simon, P.; Kroha, J.; Wahl, P.; Kern, K. A tunable two-impurity kondo system in an atomic point contact. Nat. Phys. 2011, 7, 901–906.

35

Hiraoka, R.; Minamitani, E.; Arafune, R.; Tsukahara, N.; Watanabe, S.; Kawai, M.; Takagi, N. Single-molecule quantum dot as a kondo simulator. Nat. Commun. 2017, 8, 16012.

36

Ormaza, M.; Abufager, P.; Verlhac, B.; Bachellier, N.; Bocquet, M. L.; Lorente, N.; Limot, L. Controlled spin switching in a metallocene molecular junction. Nat. Commun. 2017, 8, 1974.

37

Muenks, M.; Jacobson, P.; Ternes, M.; Kern, K. Correlation-driven transport asymmetries through coupled spins in a tunnel junction. Nat. Commun. 2017, 8, 14119.

38

Vitali, L.; Ohmann, R.; Kern, K.; Garcia-Lekue, A.; Frederiksen, T.; Sanchez-Portal, D.; Arnau, A. Surveying molecular vibrations during the formation of metal-molecule nanocontacts. Nano Lett. 2010, 10, 657–660.

39

Schneider, L.; Beck, P.; Wiebe, J.; Wiesendanger, R. Atomic-scale spin-polarization maps using functionalized superconducting probes. Sci. Adv. 2021, 7, eabd7302.

40

Luh, Y. Bound state in superconductors with paramagnetic impurities. Acta Phys. Sin. 1965, 21, 75–91.

File
12274_2021_3688_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2021
Revised: 02 June 2021
Accepted: 16 June 2021
Published: 23 July 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

We thank Kai Yang and Min Ouyang for helpful discussion. This work is supported by the National Key Research and Development Program of China (Nos. 2019YFA0308500 and 2018YFA0305800), the National Natural Science Foundation of China (Nos. 52022105 and 61888102), and the Strategic Priority Research Program of Chinese Academy of Sciences (Nos. XDB28000000 and XDB30000000). A portion of the research was performed in CAS Key Laboratory of Vacuum Physics.

Return