Journal Home > Volume 16 , Issue 4

Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices. In the non-covalent interaction-based molecular devices, the strength of the interfacial coupling between molecule and electrode is weakened compared to that of the covalent interaction-based molecular devices, which provides wide applications in fabricating versatile molecular devices. In this review, we start with the methods capable of fabricating graphene-based nanogaps, and the following routes to construct non-covalent interaction-based molecular junctions with graphene electrodes. Then we give an introduction to the reported non-covalent interaction-based molecular devices with graphene electrodes equipped with different electrical functions. Moreover, we summarize the recent progress in the design and fabrication of new-type molecular devices based on graphene and graphene-like two-dimensional (2D) materials. The review ends with a prospect on the challenges and opportunities of non-covalent interaction-based molecular electronics in the near future.


menu
Abstract
Full text
Outline
About this article

Non-covalent interaction-based molecular electronics with graphene electrodes

Show Author's information Shiqiang ZhaoHang ChenQiaozan QianHewei ZhangYang Yang( )Wenjing Hong( )
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University, Xiamen 361005, China

Abstract

Recent years have witnessed the fabrication of various non-covalent interaction-based molecular electronic devices. In the non-covalent interaction-based molecular devices, the strength of the interfacial coupling between molecule and electrode is weakened compared to that of the covalent interaction-based molecular devices, which provides wide applications in fabricating versatile molecular devices. In this review, we start with the methods capable of fabricating graphene-based nanogaps, and the following routes to construct non-covalent interaction-based molecular junctions with graphene electrodes. Then we give an introduction to the reported non-covalent interaction-based molecular devices with graphene electrodes equipped with different electrical functions. Moreover, we summarize the recent progress in the design and fabrication of new-type molecular devices based on graphene and graphene-like two-dimensional (2D) materials. The review ends with a prospect on the challenges and opportunities of non-covalent interaction-based molecular electronics in the near future.

Keywords: graphene, charge transport, molecular electronics, molecular junction, non-covalent interaction

References(103)

[1]

Coskun, A.; Spruell, J. M.; Barin, G.; Dichtel, W. R.; Flood, A. H.; Botros, Y. Y.; Stoddart, J. F. High hopes: Can molecular electronics realise its potential? Chem. Soc. Rev. 2012, 41, 4827–4859.

[2]

Xiang, D.; Wang, X. L.; Jia, C. C.; Lee, T.; Guo, X. F. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440.

[3]

Zhang, J. L.; Zhong, J. Q.; Lin, J. D.; Hu, W. P.; Wu, K.; Xu, G. Q.; Wee, A. T. S.; Chen, W. Towards single molecule switches. Chem. Soc. Rev. 2015, 44, 2998–3022.

[4]

Sun, L. L.; Diaz-Fernandez, Y. A.; Gschneidtner, T. A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411.

[5]

Darwish, N.; Paddon-Row, M. N.; Gooding, J. J. Surface-bound norbornylogous bridges as molecular rulers for investigating interfacial electrochemistry and as single molecule switches. Acc. Chem. Res. 2014, 47, 385–395.

[6]

Chen, H. L.; Zhang, W. N.; Li, M. L.; He, G.; Guo, X. F. Interface engineering in organic field-effect transistors: Principles, applications, and perspectives. Chem. Rev. 2020, 120, 2879–2949.

[7]

Xin, N.; Guan, J. X.; Zhou, C. G.; Chen, X. J. N.; Gu, C. H.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. F. Concepts in the design and engineering of single-molecule electronic devices. Nat. Rev. Phys. 2019, 1, 211–230.

[8]

Nozaki, D.; Cuniberti, G. Silicon-based molecular switch junctions. Nano Res. 2009, 2, 648–659.

[9]
Chen, H. L.; Stoddart, J. F. From molecular to supramolecular electronics. Nat. Rev. Mater., in press, DOI: 10.1038/s41578-021-00302-2.
[10]

Jia, C. C.; Migliore, A.; Xin, N.; Huang, S. Y.; Wang, J. Y.; Yang, Q.; Wang, S. P.; Chen, H. L.; Wang, D. M.; Feng, B. Y. et al. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science 2016, 352, 1443–1445.

[11]

Roldan, D.; Kaliginedi, V.; Cobo, S.; Kolivoska, V.; Bucher, C.; Hong, W. J.; Royal, G.; Wandlowski, T. Charge transport in photoswitchable dimethyldihydropyrene-type single-molecule junctions. J. Am. Chem. Soc. 2013, 135, 5974–5977.

[12]

Tam, E. S.; Parks, J. J.; Shum, W. W.; Zhong, Y. W.; Santiago-Berríos, M. E. B.; Zheng, X.; Yang, W. T.; Chan, G. K. L.; Abruña, H. D.; Ralph, D. C. Single-molecule conductance of pyridine-terminated dithienylethene switch molecules. ACS Nano 2011, 5, 5115–5123.

[13]

Chen, X. P.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C. A. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 2017, 12, 797–803.

[14]

Atesci, H.; Kaliginedi, V.; Celis Gil, J. A.; Ozawa, H.; Thijssen, J. M.; Broekmann, P.; Haga, M. A.; van der Molen, S. J. Humidity-controlled rectification switching in ruthenium-complex molecular junctions. Nat. Nanotechnol. 2018, 13, 117–121.

[15]

Kushmerick, J. Molecular transistors scrutinized. Nature 2009, 462, 994–995.

[16]

Jia, C. C.; Famili, M.; Carlotti, M.; Liu, Y.; Wang, P. Q.; Grace, I. M.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P.; Ding, M. N. et al. Quantum interference mediated vertical molecular tunneling transistors. Sci. Adv. 2018, 4, eaat8237.

[17]

Bai, J.; Daaoub, A.; Sangtarash, S.; Li, X. H.; Tang, Y. X.; Zou, Q.; Sadeghi, H.; Liu, S.; Huang, X. J.; Tan, Z. B. et al. Anti-resonance features of destructive quantum interference in single-molecule thiophene junctions achieved by electrochemical gating. Nat. Mater. 2019, 18, 364–369.

[18]

Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. Y.; Hong, W. J.; Guo, X. F.; Xiang, D. Towards single-molecule optoelectronic devices. Sci. China Chem. 2018, 61, 1368–1384.

[19]

Caneva, S.; Gehring, P.; García-Suárez, V. M.; García-Fuente, A.; Stefani, D.; Olavarria-Contreras, I. J.; Ferrer, J.; Dekker, C.; van der Zant, H. S. J. Mechanically controlled quantum interference in graphene break junctions. Nat. Nanotechnol. 2018, 13, 1126–1131.

[20]

Liu, J. Y.; Huang, X. Y.; Wang, F.; Hong, W. J. Quantum interference effects in charge transport through single-molecule junctions: Detection, manipulation, and application. Acc. Chem. Res. 2019, 52, 151–160.

[21]

Tang, C.; Chen, L. J.; Zhang, L. Y.; Chen, Z. X.; Li, G. P.; Yan, Z. W.; Lin, L. C.; Liu, J. Y.; Huang, L. F.; Ye, Y. L. et al. Multicenter-bond-based quantum interference in charge transport through single-molecule carborane junctions. Angew. Chem., Int. Ed. 2019, 58, 10601–10605.

[22]

Chen, Z. X.; Chen, L. J.; Li, G. P.; Chen, Y. R.; Tang, C.; Zhang, L. Y.; Liu, J. P.; Chen, L. N.; Yang, Y.; Shi, J. et al. Control of quantum interference in single-molecule junctions via Jahn-Teller distortion. Cell Rep. Phys. Sci. 2021, 2, 100329.

[23]

Cui, X. M.; Qin, F.; Lai, Y. H.; Wang, H.; Shao, L.; Chen, H. J.; Wang, J. F.; Lin, H. Q. Molecular tunnel junction-controlled high-order charge transfer plasmon and fano resonances. ACS Nano 2018, 12, 12541–12550.

[24]

Wang, K.; Vezzoli, A.; Grace, I. M.; McLaughlin, M.; Nichols, R. J.; Xu, B. Q.; Lambert, C. J.; Higgins, S. J. Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chem. Sci. 2019, 10, 2396–2403.

[25]

Burzurí, E.; Yamamoto, Y.; Warnock, M.; Zhong, X.L.; Park, K.; Cornia, A.; van der Zant, H. S. J. Franck-Condon blockade in a single-molecule transistor. Nano Lett. 2014, 14, 3191–3196.

[26]

Lovat, G.; Choi, B.; Paley, D. W.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Room-temperature current blockade in atomically defined single-cluster junctions. Nat. Nanotechnol. 2017, 12, 1050–1054.

[27]

Zhao, S. Q.; Wu, Q. Q.; Pi, J. C.; Liu, J. Y.; Zheng, J. T.; Hou, S. J.; Wei, J. Y.; Li, R. H.; Sadeghi, H.; Yang, Y. et al. Cross-plane transport in a single-molecule two-dimensional van der Waals heterojunction. Sci. Adv. 2020, 6, eaba6714.

[28]

Huang, C. C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J. T.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P. et al. Single-molecule detection of dihydroazulene photo-thermal reaction using break junction technique. Nat. Commun. 2017, 8, 15436.

[29]

Yelin, T.; Korytár, R.; Sukenik, N.; Vardimon, R.; Kumar, B.; Nuckolls, C.; Evers, F.; Tal, O. Conductance saturation in a series of highly transmitting molecular junctions. Nat. Mater. 2016, 15, 444–449.

[30]

Jia, C. C.; Guo, X. F. Molecule-electrode interfaces in molecular electronic devices. Chem. Soc. Rev. 2013, 42, 5642–5660.

[31]

Cubukcu, E.; Aydin, K.; Ozbay, E.; Foteinopoulou, S.; Soukoulis, C. M. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 2003, 91, 207401.

[32]

Lörtscher, E. Wiring molecules into circuits. Nat. Nanotechnol. 2013, 8, 381–384.

[33]

Prins, F.; Hayashi, T.; de Vos van Steenwijk, B. J. A.; Gao, B.; Osorio, E. A.; Muraki, K.; van der Zant, H. S. J. Room-temperature stability of Pt nanogaps formed by self-breaking. Appl. Phys. Lett. 2009, 94, 123108.

[34]

Li, Y.; Yang, C.; Guo, X. F. Single-molecule electrical detection: A promising route toward the fundamental limits of chemistry and life science. Acc. Chem. Res. 2020, 53, 159–169.

[35]

Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F. Building high-throughput molecular junctions using indented graphene point contacts. Angew. Chem., Int. Ed. 2012, 51, 12228–12232.

[36]

Prins, F.; Barreiro, A.; Ruitenberg, J. W.; Seldenthuis, J. S.; Aliaga-Alcalde, N.; Vandersypen, L. M. K.; van der Zant, H. S. J. Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. Nano Lett. 2011, 11, 4607–4611.

[37]

Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O’Brien, S. et al. Covalently bridging gaps in single-walled carbon nanotubes with conducting molecules. Science 2006, 311, 356–359.

[38]

Gao, L.; Li, L. L.; Wang, X. L.; Wu, P. W.; Cao, Y.; Liang, B.; Li, X.; Lin, Y. W.; Lu, Y.; Guo, X. F. Graphene-DNAzyme junctions: A platform for direct metal ion detection with ultrahigh sensitivity. Chem. Sci. 2015, 6, 2469–2473.

[39]

Xin, N.; Li, X.; Jia, C.; Gong, Y.; Li, M. L.; Wang, S. P.; Zhang, G. Y.; Yang, J. L.; Guo, X. F. Tuning charge transport in aromatic-ring single-molecule junctions via ionic-liquid gating. Angew. Chem., Int. Ed. 2018, 57, 14026–14031.

[40]

Xin, N.; Kong, X. H.; Zhang, Y. P.; Jia, C. C.; Liu, L.; Gong, Y.; Zhang, W. N.; Wang, S. P.; Zhang, G. Y.; Zhang, H. L. et al. Control of unipolar/ambipolar transport in single-molecule transistors through interface engineering. Adv. Electron. Mater. 2020, 6, 1901237.

[41]

Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

[42]

Sadeghi, H.; Mol, J. A.; Lau, C. S.; Briggs, G. A. D.; Warner, J.; Lambert, C. J. Conductance enlargement in picoscale electroburnt graphene nanojunctions. Proc. Nat. Acad. Sci. USA 2015, 112, 2658–2663.

[43]

Thomas, J. O.; Limburg, B.; Sowa, J. K.; Willick, K.; Baugh, J.; Briggs, G. A. D.; Gauger, E. M.; Anderson, H. L.; Mol, J. A. Understanding resonant charge transport through weakly coupled single-molecule junctions. Nat. Commun. 2019, 10, 4628.

[44]

Puczkarski, P.; Wu, Q. Q.; Sadeghi, H.; Hou, S. J.; Karimi, A.; Sheng, Y. W.; Warner, J. H.; Lambert, C. J.; Briggs, G. A. D.; Mol, J. A. Low-frequency noise in graphene tunnel junctions. ACS Nano 2018, 12, 9451–9460.

[45]

Wang, G.; Zeng, B. F.; Zhao, S. Q.; Qian, Q. Z.; Hong, W. J.; Yang, Y. Application of electrochemistry to single-molecule junctions: From construction to modulation. Sci. China Chem. 2019, 62, 1333–1345.

[46]

Garner, M. H.; Li, H. X.; Chen, Y.; Su, T. A.; Shangguan, Z. C.; Paley, D. W.; Liu, T. F.; Ng, F.; Li, H. X.; Xiao, S. X. et al. Comprehensive suppression of single-molecule conductance using destructive σ-interference. Nature 2018, 558, 415–419.

[47]

Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223.

[48]

Zhan, C.; Wang, G.; Zhang, X. G.; Li, Z. H.; Wei, J. Y.; Si, Y.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule measurement of adsorption free energy at the solid-liquid interface. Angew. Chem., Int. Ed. 2019, 58, 14534–14538.

[49]

Chen, Z. X.; Chen, L. J.; Liu, J. P.; Li, R. H.; Tang, C.; Hua, Y. H.; Chen, L. C.; Shi, J.; Yang, Y.; Liu, J.Y. et al. Modularized tuning of charge transport through highly twisted and localized single-molecule junctions. J. Phys. Chem. Lett. 2019, 10, 3453–3458.

[50]

Cai, S. N.; Deng, W. T.; Huang, F. F.; Chen, L. J.; Tang, C.; He, W. X.; Long, S. C.; Li, R. H.; Tan, Z. B.; Liu, J. Y. et al. Light-driven reversible intermolecular proton transfer at single-molecule junctions. Angew. Chem., Int. Ed. 2019, 58, 3829–3833.

[51]

Yang, Y.; Liu, J. Y.; Zheng, J. T.; Lu, M.; Shi, J.; Hong, W. J.; Yang, F. Z.; Tian, Z. Q. Promising electroplating solution for facile fabrication of Cu quantum point contacts. Nano Res. 2017, 10, 3314–3323.

[52]

Zheng, J. T.; Liu, J. Y.; Zhuo, Y. J.; Li, R. H.; Jin, X.; Yang, Y.; Chen, Z. B.; Shi, J.; Xiao, Z. Y.; Hong, W. J. et al. Electrical and SERS detection of disulfide-mediated dimerization in single-molecule benzene-1,4-dithiol junctions. Chem. Sci. 2018, 9, 5033–5038.

[53]

Zhan, C.; Wang, G.; Yi, J.; Wei, J. Y.; Li, Z. H.; Chen, Z. B.; Shi, J.; Yang, Y.; Hong, W. J.; Tian, Z. Q. Single-molecule plasmonic optical trapping. Matter 2020, 3, 1350–1360.

[54]

Liu, J. Y.; Zhao, X. T.; Zheng, J. T.; Huang, X. Y.; Tang, Y. X.; Wang, F.; Li, R. H.; Pi, J. C.; Huang, C. C.; Wang, L. et al. Transition from tunneling leakage current to molecular tunneling in single-molecule junctions. Chem 2019, 5, 390–401.

[55]

Zeng, B. F.; Wang, G.; Qian, Q. Z.; Chen, Z. X.; Zhang, X. G.; Lu, Z. X.; Zhao, S. Q.; Feng, A. N.; Shi, J.; Yang, Y. et al. Selective fabrication of single-molecule junctions by interface engineering. Small 2020, 16, 2004720.

[56]

Kim, T.; Liu, Z. F.; Lee, C.; Neaton, J. B.; Venkataraman, L. Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proc. Nat. Acad. Sci. USA 2014, 111, 10928–10932.

[57]

Rudnev, A. V.; Kaliginedi, V.; Droghetti, A.; Ozawa, H.; Kuzume, A.; Haga, M. A.; Broekmann, P.; Rungger, I. Stable anchoring chemistry for room temperature charge transport through graphite-molecule contacts. Sci. Adv. 2017, 3, e1602297.

[58]

Zhang, Q.; Liu, L. L.; Tao, S. H.; Wang, C. Y.; Zhao, C. Z.; González, C.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Graphene as a promising electrode for low-current attenuation in nonsymmetric molecular junctions. Nano Lett. 2016, 16, 6534–6540.

[59]

Zhang, Q.; Tao, S. H.; Yi, R. W.; He, C. H.; Zhao, C. Z.; Su, W. T.; Smogunov, A.; Dappe, Y. J.; Nichols, R. J.; Yang, L. Symmetry effects on attenuation factors in graphene-based molecular junctions. J. Phys. Chem. Lett. 2017, 8, 5987–5992.

[60]

Jia, C. C.; Wang, J. Y.; Yao, C. J.; Cao, Y.; Zhong, Y. W.; Liu, Z. R.; Liu, Z. F.; Guo, X. F. Conductance switching and mechanisms in single-molecule junctions. Angew. Chem., Int. Ed. 2013, 52, 8666–8670.

[61]

Ullmann, K.; Coto, P. B.; Leitherer, S.; Molina-Ontoria, A.; Martín, N.; Thoss, M.; Weber, H. B. Single-molecule junctions with epitaxial graphene nanoelectrodes. Nano Lett. 2015, 15, 3512–3518.

[62]

Leitherer, S.; Coto, P. B.; Ullmann, K.; Weber, H. B.; Thoss, M. Charge transport in C60-based single-molecule junctions with graphene electrodes. Nanoscale 2017, 9, 7217–7226.

[63]

Limburg, B.; Thomas, J. O.; Holloway, G.; Sadeghi, H.; Sangtarash, S.; Hou, I. C. Y.; Cremers, J.; Narita, A.; Müllen, K.; Lambert, C. J. et al. Anchor groups for graphene-porphyrin single-molecule transistors. Adv. Funct. Mater. 2018, 28, 1803629.

[64]

Jeong, H.; Kim, D.; Xiang, D.; Lee, T. High-yield functional molecular electronic devices. ACS Nano 2017, 11, 6511–6548.

[65]

Xie, Z. T.; Bâldea, I.; Haugstad, G.; Frisbie, C. D. Mechanical deformation distinguishes tunneling pathways in molecular junctions. J. Am. Chem. Soc. 2019, 141, 497–504.

[66]

Qiu, X. K.; Ivasyshyn, V.; Qiu, L.; Enache, M.; Dong, J. J.; Rousseva, S.; Portale, G.; Stöhr, M.; Hummelen, J. C.; Chiechi, R. C. Thiol-free self-assembled oligoethylene glycols enable robust air-stable molecular electronics. Nat. Mater. 2020, 19, 330–337.

[67]

Han, B.; Li, Y.; Ji, X.; Song, X.; Ding, S.; Li, B.; Khalid, H.; Zhang, Y.; Xu, X.; Tian, L. et al. Systematic modulation of charge transport in molecular devices through facile control of molecule-electrode coupling using a double self-assembled monolayer nanowire junction. J. Am. Chem. Soc. 2020, 142, 9708–9717.

[68]

Xie, Z. T.; Bâldea, I.; Oram, S.; Smith, C. E.; Frisbie, C. D. Effect of heteroatom substitution on transport in alkanedithiol-based molecular tunnel junctions: Evidence for universal behavior. ACS Nano 2017, 11, 569–578.

[69]

O'Driscoll, L. J.; Wang, X. T.; Jay, M.; Batsanov, A. S.; Sadeghi, H.; Lambert, C. J.; Robinson, B. J.; Bryce, M. R. Carbazole-based tetrapodal anchor groups for gold surfaces: Synthesis and conductance properties. Angew. Chem., Int. Ed. 2020, 59, 882–889.

[70]

Long, B.; Manning, M.; Burke, M.; Szafranek, B. N.; Visimberga, G.; Thompson, D.; Greer, J. C.; Povey, I. M.; MacHale, J.; Lejosne, G. et al. Non-covalent functionalization of graphene using self-assembly of alkane-amines. Adv. Funct. Mater. 2012, 22, 717–725.

[71]

Wang, G.; Kim, Y.; Choe, M.; Kim, T. W.; Lee, T. A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv. Mater. 2011, 23, 755–760.

[72]

Li, T.; Hauptmann, J. R.; Wei, Z. M.; Petersen, S.; Bovet, N.; Vosch, T.; Nygård, J.; Hu, W. P.; Liu, Y. Q.; Bjørnholm, T. et al. Solution-processed ultrathin chemically derived graphene films as soft top contacts for solid-state molecular electronic junctions. Adv. Mater. 2012, 24, 1333–1339.

[73]

Kühnel, M.; Petersen, S. V.; Hviid, R.; Overgaard, M. H.; Laursen, B. W.; Nørgaard, K. Monolayered graphene oxide as a low contact resistance protection layer in alkanethiol solid-state devices. J. Phys. Chem. C 2018, 122, 9731–9737.

[74]

Nerngchamnong, N.; Yuan, L.; Qi, D. C.; Li, J.; Thompson, D.; Nijhuis, C. A. The role of van der Waals forces in the performance of molecular diodes. Nat. Nanotechnol. 2013, 8, 113–118.

[75]

Baghbanzadeh, M.; Belding, L.; Yuan, L.; Park, J.; Al-Sayah, M. H.; Bowers, C. M.; Whitesides, G. M. Dipole-induced rectification across AgTS/SAM//Ga2O3/EGaIn junctions. J. Am. Chem. Soc. 2019, 141, 8969–8980.

[76]

Baghbanzadeh, M.; Pieters, P. F.; Yuan, L.; Collison, D.; Whitesides, G. M. The rate of charge tunneling in EGaIn junctions is not sensitive to halogen substituents at the self-assembled monolayer//Ga2O3 interface. ACS Nano 2018, 12, 10221–10230.

[77]

Kumar, S.; van Herpt, J. T.; Gengler, R. Y. N.; Feringa, B. L.; Rudolf, P.; Chiechi, R. C. Mixed monolayers of spiropyrans maximize tunneling conductance switching by photoisomerization at the molecule-electrode interface in EGaIn junctions. J. Am. Chem. Soc. 2016, 138, 12519–12526.

[78]

Zhang, X.; Li, T. Molecular-scale electronics: From device fabrication to functionality. Chin. Chem. Lett. 2017, 28, 2058–2064.

[79]

Kong, G. D.; Byeon, S. E.; Park, S.; Song, H.; Kim, S. Y.; Yoon, H. J. Mixed molecular electronics: Tunneling behaviors and applications of mixed self-assembled monolayers. Adv. Electron. Mater. 2020, 6, 1901157.

[80]

Seo, S.; Min, M.; Lee, S. M.; Lee, H. Photo-switchable molecular monolayer anchored between highly transparent and flexible graphene electrodes. Nat. Commun. 2013, 4, 1920.

[81]

Li, B.; Famili, M.; Pensa, E.; Grace, I.; Long, N. J.; Lambert, C.; Albrecht, T.; Cohen, L. F. Cross-plane conductance through a graphene/molecular monolayer/Au sandwich. Nanoscale 2018, 10, 19791–19798.

[82]

Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A moldable liquid metal for electrical characterization of self-assembled monolayers. Angew. Chem., Int. Ed. 2007, 47, 142–144.

[83]

Dickey, M. D.; Chiechi, R. C.; Larsen, R. J.; Weiss, E. A.; Weitz, D. A.; Whitesides, G. M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104.

[84]

Kong, G. D.; Song, H.; Yoon, S.; Kang, H. G.; Chang, R.; Yoon, H. J. Interstitially mixed self-assembled monolayers enhance electrical stability of molecular junctions. Nano Lett. 2021, 21, 3162–3169.

[85]

Song, P.; Sangeeth, C. S. S.; Thompson, D.; Du, W.; Loh, K. P.; Nijhuis, C. A. Noncovalent self-assembled monolayers on graphene as a highly stable platform for molecular tunnel junctions. Adv. Mater. 2016, 28, 631–639.

[86]

El Abbassi, M.; Sangtarash, S.; Liu, X. S.; Perrin, M. L.; Braun, O.; Lambert, C.; van der Zant, H. S. J.; Yitzchaik, S.; Decurtins, S.; Liu, S. X. et al. Robust graphene-based molecular devices. Nat. Nanotechnol. 2019, 14, 957–961.

[87]

Song, P.; Guerin, S.; Tan, S. J. R.; Annadata, H. V.; Yu, X. J.; Scully, M.; Han, Y. M.; Roemer, M.; Loh, K. P.; Thompson, D. et al. Stable molecular diodes based on π−π interactions of the molecular frontier orbitals with graphene electrodes. Adv. Mater. 2018, 30, 1706322.

[88]

Ai, Y.; Kovalchuk, A.; Qiu, X. K.; Zhang, Y. X.; Kumar, S.; Wang, X. T.; Kühnel, M.; Nørgaard, K.; Chiechi, R. C. In-place modulation of rectification in tunneling junctions comprising self-assembled monolayers. Nano Lett. 2018, 18, 7552–7559.

[89]

Wu, Q. Q.; Hou, S. J.; Sadeghi, H.; Lambert, C. J. A single-molecule porphyrin-based switch for graphene nano-gaps. Nanoscale 2018, 10, 6524–6530.

[90]

Famili, M.; Jia, C. C.; Liu, X. S.; Wang, P. Q.; Grace, I. M.; Guo, J.; Liu, Y.; Feng, Z. Y.; Wang, Y. L.; Zhao, Z. P. et al. Self-assembled molecular-electronic films controlled by room temperature quantum interference. Chem 2019, 5, 474–484.

[91]

Jia, C. C.; Grace, I. M.; Wang, P. Q.; Almeshal, A.; Huang, Z. H.; Wang, Y. L.; Chen, P.; Wang, L. Y.; Zhou, J. Y.; Feng, Z. Y. et al. Redox control of charge transport in vertical ferrocene molecular tunnel junctions. Chem 2020, 6, 1172–1182.

[92]

Meng, L. N.; Xin, N.; Hu, C.; Wang, J. Y.; Gui, B.; Shi, J. J.; Wang, C.; Shen, C.; Zhang, G. Y.; Guo, H. et al. Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nat. Commun. 2019, 10, 1450.

[93]

Iwane, M.; Tada, T.; Osuga, T.; Murase, T.; Fujita, M.; Nishino, T.; Kiguchi, M.; Fujii, S. Controlling stacking order and charge transport in π-stacks of aromatic molecules based on surface assembly. Chem. Commun. 2018, 54, 12443–12446.

[94]

Huang, X. Y.; Tang, C.; Li, J. Q.; Chen, L. C.; Zheng, J. T.; Zhang, P.; Le, J. B.; Li, R. H.; Li, X. H.; Liu, J. Y. et al. Electric field-induced selective catalysis of single-molecule reaction. Sci. Adv. 2019, 5, eaaw3072.

[95]

Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Electrostatic catalysis of a Diels-Alder reaction. Nature 2016, 531, 88–91.

[96]

Tang, C.; Zheng, J. T.; Ye, Y. L.; Liu, J. Y.; Chen, L. J.; Yan, Z. W.; Chen, Z. X.; Chen, L. C.; Huang, X. Y.; Bai, J. et al. Electric-field-induced connectivity switching in single-molecule junctions. iScience 2020, 23, 100770.

[97]

Dappe, Y. J.; González, C.; Cuevas, J. C. Carbon tips for all-carbon single-molecule electronics. Nanoscale 2014, 6, 6953–6958.

[98]

Tan, Z. B.; Zhang, D.; Tian, H. R.; Wu, Q. Q.; Hou, S. J.; Pi, J. C.; Sadeghi, H.; Tang, Z.; Yang, Y.; Liu, J. Y. et al. Atomically defined angstrom-scale all-carbon junctions. Nat. Commun. 2019, 10, 1748.

[99]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[100]

Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

[101]

Margapoti, E.; Li, J.; Ceylan, Ö.; Seifert, M.; Nisic, F.; Anh, T. L.; Meggendorfer, F.; Dragonetti, C.; Palma, C. A.; Barth, J. V. et al. A 2D semiconductor-self-assembled monolayer photoswitchable diode. Adv. Mater. 2015, 27, 1426–1431.

[102]

Zheng, Y. B.; Payton, J. L.; Chung, C. H.; Liu, R.; Cheunkar, S.; Pathem, B. K.; Yang, Y.; Jensen, L.; Weiss, P. S. Surface-enhanced raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments. Nano Lett. 2011, 11, 3447–3452.

[103]

Shin, J.; Yang, S.; Jang, Y.; Eo, J. S.; Kim, T. W.; Lee, T.; Lee, C. H.; Wang, G. Tunable rectification in a molecular heterojunction with two-dimensional semiconductors. Nat. Commun. 2020, 11, 1412.

Publication history
Copyright
Acknowledgements

Publication history

Received: 12 May 2021
Revised: 07 June 2021
Accepted: 16 June 2021
Published: 16 July 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China (Nos. 21973079 and 22032004), the National Key R&D Program of China (No. 2017YFA0204902), and the Fundamental Research Funds for the Central Universities (Xiamen University: No. 20720190002).

Return