Journal Home > Volume 16 , Issue 4

Amorphous alloys, also known as metallic glasses, are solid metallic materials having long-range disordered atomic structures. Compared to crystalline alloys, amorphous alloys not only have metallic characters, but also possess several distinct properties associated to the amorphous structure, such as isotropy, composition flexibility, unsaturated surface, etc. As a result, amorphous alloys offer a class of highly promising materials for catalyzing electrochemical reactions. In this minireview, the preparation, characterization and electrocatalytic performances of a variety of metallic amorphous alloy materials are summarized. The influences of the amorphous alloy structure on different electrochemical reactions are discussed. Finally, a summary on the advantages and challenges of amorphous alloys in electrocatalysis is provided, along with some perspectives about the future research directions.


menu
Abstract
Full text
Outline
About this article

Amorphous alloys for electrocatalysis: The significant role of the amorphous alloy structure

Show Author's information Xingyun Li1,2,§Weizheng Cai1,§Dong-Sheng Li3Jun Xu4Huabing Tao5( )Bin Liu1,6( )
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
Fujian Provincial Key Laboratory for Soft Functional Materials, Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen 361005, China
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Division of Chemical and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore

§ Xingyun Li and Weizheng Cai contributed equally to this work.

Abstract

Amorphous alloys, also known as metallic glasses, are solid metallic materials having long-range disordered atomic structures. Compared to crystalline alloys, amorphous alloys not only have metallic characters, but also possess several distinct properties associated to the amorphous structure, such as isotropy, composition flexibility, unsaturated surface, etc. As a result, amorphous alloys offer a class of highly promising materials for catalyzing electrochemical reactions. In this minireview, the preparation, characterization and electrocatalytic performances of a variety of metallic amorphous alloy materials are summarized. The influences of the amorphous alloy structure on different electrochemical reactions are discussed. Finally, a summary on the advantages and challenges of amorphous alloys in electrocatalysis is provided, along with some perspectives about the future research directions.

Keywords: electrocatalysis, amorphous alloys, nonperiodic atomic structure, isotropy, metastability

References(96)

[1]

Dyre, J. C. Colloquium: The glass transition and elastic models of glass-forming liquids. Rev. Mod. Phys. 2006, 78, 953–972.

[2]

Jun W. K.; Willens, R. H.; Duwez, P. Non-crystalline structure in solidified gold–silicon alloys. Nature 1960, 187, 869–870.

[3]

Greer, A. L. Metallic glasses. Science 1995, 267, 1947–1953.

[4]

Wang, W. H. The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater Sci. 2012, 57, 487–656.

[5]

Kumar, G.; Desai, A.; Schroers, J. Bulk metallic glass: The smaller the better. Adv. Mater. 2011, 23, 461–476.

[6]

Jiang, J. H.; Zhai, R. S.; Bao, X. H. Electrocatalytic properties of Cu-Zr amorphous alloy towards the electrochemical hydrogenation of nitrobenzene. J. Alloys Compd. 2003, 354, 248–258.

[7]

Brookes, H. C.; Carruthers, C. M.; Doyle, T. B. The electrochemical and electrocatalytic behaviour of glassy metals. J. Appl. Electrochem. 2005, 35, 903–913.

[8]

Sekol, R. C.; Carmo, M.; Kumar, G.; Gittleson, F.; Doubek, G.; Sun, K.; Schroers, J.; Taylor, A. D. Pd-Ni-Cu-P metallic glass nanowires for methanol and ethanol oxidation in alkaline media. Int. J. Hydrogen Energy 2013, 38, 11248–11255.

[9]

Kreysa, G.; Håkansson, B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 1986, 201, 61–83.

[10]
Thomas, J. M.; Thomas, W. J. Principles and Practice of Heterogeneous Catalysis, 2nd ed.; John Wiley & Sons: New York, 2015.
[11]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[12]

Anantharaj, S.; Noda, S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020, 16, 1905779.

[13]

Li, F. C.; Liu, T.; Zhang, J. Y.; Shuang, S.; Wang, Q.; Wang, A. D.; Wang, J. G.; Yang, Y. Amorphous–nanocrystalline alloys: Fabrication, properties, and applications. Mater. Today Adv. 2019, 4, 100027.

[14]

Li, J. Y.; Doubek, G.; McMillon-Brown, L.; Taylor, A. D. Recent advances in metallic glass nanostructures: Synthesis strategies and electrocatalytic applications. Adv. Mater. 2019, 31, 1802120.

[15]

Zhang, L. C.; Jia, Z.; Lyu, F. C.; Liang, S. X.; Lu, J. A review of catalytic performance of metallic glasses in wastewater treatment: Recent progress and prospects. Prog. Mater. Sci. 2019, 105, 100576.

[16]

Pei, Y.; Zhou, G. B.; Luan, N.; Zong, B. N.; Qiao, M. H.; Tao, F. Synthesis and catalysis of chemically reduced metal–metalloid amorphous alloys. Chem. Soc. Rev. 2012, 41, 8140–8162.

[17]

Heimendahl, L. V. Metallic glasses as relaxed Bernal structures. J. Phys. F: Met. Phys. 1975, 5, L141.

[18]

Sheng, H. W.; Luo, W. K.; Alamgir, F. M.; Bai, J. M.; Ma, E. Atomic packing and short-to-medium-range order in metallic glasses. Nature 2006, 439, 419–425.

[19]

Deng, J. F.; Li, H. X.; Wang, W. J. Progress in design of new amorphous alloy catalysts. Catal. Today 1999, 51, 113–125.

[20]

Ou, S. L.; Ma, D. G.; Li, Y. H.; Yubuta, K.; Tan, Z. Q.; Wang, Y. M.; Zhang, W. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy. J. Alloys Compd. 2017, 706, 215–219.

[21]

Guo, S.; Liu, C. T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 2011, 21, 433–446.

[22]

Liu, X. Y.; Xiang, Z.; Niu, J. C.; Xia, K. D.; Yang, Y.; Yan, B.; Lu, W. The corrosion behaviors of amorphous, nanocrystalline and crystalline Ni-W alloys coating. Int. J. Electrochem. Sci. 2015, 10, 9042–9048.

[23]

Gebert, A.; Wolff, U.; John, A.; Eckert, J.; Schultz, L. Stability of the bulk glass-forming Mg65Y10Cu25 alloy in aqueous electrolytes. Mater. Sci. Eng.: A 2001, 299, 125–135.

[24]

Fabbri, E.; Nachtegaal, M.; Binninger, T.; Cheng, X.; Kim, B. J.; Durst, J.; Bozza, F.; Graule, T.; Schäublin, R.; Wiles, L. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 2017, 16, 925–931.

[25]

Inoue, A.; Zhang, T.; Masumoto, T. Zr–Al–Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region. Mater. Trans., JIM 1990, 31, 177–183.

[26]

Zhang, L. Y.; Ouyang, Y. R.; Wang, S.; Wu, D. B.; Jiang, M. C.; Wang, F. Q.; Yuan, W. Y.; Li, C. M. Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small 2019, 15, 1904245.

[27]

Zhang, F. B.; Wu, J. L.; Jiang, W.; Hu, Q. Z.; Zhang, B. New and efficient electrocatalyst for hydrogen production from water splitting: Inexpensive, robust metallic glassy ribbons based on iron and cobalt. ACS Appl. Mater. Interfaces 2017, 9, 31340–31344.

[28]

Tang, W. K.; Liu, X. F.; Li, Y.; Pu, Y. H.; Lu, Y.; Song, Z. M.; Wang, Q.; Yu, R. H.; Shui, J. L. Boosting electrocatalytic water splitting via metal-metalloid combined modulation in quaternary Ni-Fe-P-B amorphous compound. Nano Res. 2020, 13, 447–454.

[29]

Zhu, Y.; Liu, F. P.; Ding, W. P.; Guo, X. F.; Chen, Y. Noncrystalline metal–boron nanotubes: Synthesis, characterization, and catalytic-hydrogenation properties. Angew. Chem. 2006, 118, 7369–7372.

[30]

Li, T. T.; Li, S.; Zuo, Y. P.; Zhu, G. L.; Han, H. Y. Amorphous nickel boride membrane coated PdCuCo dendrites as high-efficiency catalyst for oxygen reduction and methanol oxidation reaction. Mater. Today Energy 2019, 12, 179–185.

[31]

Nsanzimana, J. M. V.; Peng, Y. C.; Xu, Y. Y.; Thia, L.; Wang, C.; Xia, B. Y.; Wang, X. An efficient and earth-abundant oxygen-evolving electrocatalyst based on amorphous metal borides. Adv. Energy Mater. 2018, 8, 1701475.

[32]

Kang, Y. Q.; Henzie, J.; Gu, H. J.; Na, J.; Fatehmulla, A.; Shamsan, B. S. A.; Aldhafiri, A. M.; Farooq, W. A.; Bando, Y.; Asahi, T. et al. Mesoporous metal–metalloid amorphous alloys: The first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method. Small 2020, 16, 1906707.

[33]

Li, H.; Liu, J.; Xie, S. H.; Qiao, M. H.; Dai, W. L.; Li, H. X. Highly active Co–B amorphous alloy catalyst with uniform nanoparticles prepared in oil-in-water microemulsion. J. Catal. 2008, 259, 104–110.

[34]

Yan, Z. J.; Xue, D. S. Synthesis of ultrafine amorphous Fe–B alloy nanoparticles using anodic aluminum oxide templates. J. Mater. Sci. 2008, 43, 771–774.

[35]

Wei, W.; Zhao, Y.; Peng, S. C.; Zhang, H. Y.; Bian, Y. P.; Li, H. X.; Li, H. Hollow Ni–Co–B amorphous alloy nanospheres: Facile fabrication via vesicle-assisted chemical reduction and their enhanced catalytic performances. J. Mater. Chem. A 2014, 2, 19253–19259.

[36]

Li, H.; Xu, Y.; Liu, J.; Zhao, Q. F.; Li, H. X. Hollow Ni–B amorphous alloy with enhanced catalytic efficiency prepared in emulsion system. J. Colloid Interface Sci. 2009, 334, 176–182.

[37]

Tong, D. G.; Han, X.; Chu, W.; Chen, H.; Ji, X. Y. Preparation of mesoporous Co–B catalyst via self-assembled triblock copolymer templates. Mater. Lett. 2007, 61, 4679–4682.

[38]

Jiang, B.; Song, H.; Kang, Y. Q.; Wang, S. Y.; Wang, Q.; Zhou, X.; Kani, K.; Guo, Y. N.; Ye, J. H.; Li, H. X. et al. A mesoporous non-precious metal boride system: Synthesis of mesoporous cobalt boride by strictly controlled chemical reduction. Chem. Sci. 2020, 11, 791–796.

[39]

Wang, K. H.; Sun, K. L.; Yu, T. P.; Liu, X.; Wang, G. X.; Jiang, L. H.; Xie, G. W. Facile synthesis of nanoporous Ni–Fe–P bifunctional catalysts with high performance for overall water splitting. J. Mater. Chem. A 2019, 7, 2518–2523.

[40]

Chang, B.; Hao, S.; Ye, Z. X.; Yang, Y. C. A self-supported amorphous Ni–P alloy on a CuO nanowire array: An efficient 3D electrode catalyst for water splitting in alkaline media. Chem. Commun. 2018, 54, 2393–2396.

[41]

Wang, T. Y.; Wang, C.; Jin, Y.; Sviripa, A.; Liang, J. S.; Han, J. T.; Huang, Y. H.; Li, Q.; Wu, G. Amorphous Co–Fe–P nanospheres for efficient water oxidation. J. Mater. Chem. A 2017, 5, 25378–25384.

[42]

Huang, Z. Z.; Zhang, T. F.; Liu, J. K.; Zhang, L. H.; Jin, Y. H.; Wang, J. P.; Jiang, K. L.; Fan, S. S.; Li, Q. Q. Amorphous MoS2 photodetector with ultra-broadband response. ACS Appl. Electron. Mater. 2019, 1, 1314–1321.

[43]

Ramya, M.; Karthika, M.; Selvakumar, R.; Raj, B.; Ravi, K. R. A facile and efficient single step ball milling process for synthesis of partially amorphous Mg-Zn-Ca alloy powders for dye degradation. J. Alloys Compd. 2017, 696, 185–192.

[44]

Kumar, G.; Tang, H. X.; Schroers, J. Nanomoulding with amorphous metals. Nature 2009, 457, 868–872.

[45]

Carmo, M.; Sekol, R. C.; Ding, S. Y.; Kumar, G.; Schroers, J.; Taylor, A. D. Bulk metallic glass nanowire architecture for electrochemical applications. ACS Nano 2011, 5, 2979–2983.

[46]

Wen, M.; Liu, H. Q.; Zhang, F.; Zhu, Y. Z.; Liu, D.; Tian, Y.; Wu, Q. S. Amorphous FeNiPt nanoparticles with tunable length for electrocatalysis and electrochemical determination of thiols. Chem. Commun. 2009, 4530–4532.

[47]

Wang, W. C.; He, T. O.; Yang, X. L.; Liu, Y. M.; Wang, C. Q.; Li, J.; Xiao, A. D.; Zhang, K.; Shi, X. T.; Jin, M. S. General synthesis of amorphous PdM (M = Cu, Fe, Co, Ni) alloy nanowires for boosting HCOOH dehydrogenation. Nano Lett. 2021, 21, 3458–3464.

[48]

Cheng, H. F.; Yang, N. L.; Liu, G. G.; Ge, Y. Y.; Huang, J. T.; Yun, Q. B.; Du, Y. H.; Sun, C. J.; Chen, B.; Liu, J. W. et al. Ligand-exchange-induced amorphization of Pd nanomaterials for highly efficient electrocatalytic hydrogen evolution reaction. Adv. Mater. 2020, 32, 1902964.

[49]

Zhao, Y. G.; Liu, J. J.; Liu, C. G.; Wang, F.; Song, Y. Amorphous CuPt alloy nanotubes induced by Na2S2O3 as efficient catalysts for the methanol oxidation reaction. ACS Catal. 2016, 6, 4127–4134.

[50]

Peng, X.; Qasim, A. M.; Jin, W. H.; Wang, L. S.; Hu, L. S.; Miao, Y. P.; Li, W.; Li, Y.; Liu, Z. T.; Huo, K. F. et al. Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: An advanced alkaline hydrogen evolution electrocatalyst. Nano Energy 2018, 53, 66–73.

[51]

Qiao, A.; Tao, H. Z.; Yue, Y. Z. Enhancing ionic conductivity in Ag3PS4 via mechanical amorphization. J. Non-Cryst. Solids 2019, 521, 119476.

[52]

Uner, N. B.; Thimsen, E. Low temperature plasma as a means to transform nanoparticle atomic structure. Plasma Sources Sci. Technol. 2018, 27, 074005.

[53]

Zhang, X.; Luo, Z. M.; Yu, P.; Cai, Y. Q.; Du, Y. H.; Wu, D. X.; Gao, S.; Tan, C. L.; Li, Z.; Ren, M. Q. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 2018, 1, 460–468.

[54]

Hu, Y. C.; Wang, Y. Z.; Su, R.; Cao, C. R.; Li, F.; Sun, C. W.; Yang, Y.; Guan, P. F.; Ding, D. W.; Wang, Z. L. et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation. Adv. Mater. 2016, 28, 10293–10297.

[55]

Wang, J.; Han, L. L.; Huang, B. L.; Shao, Q.; Xin, H. L.; Huang, X. Q. Amorphization activated ruthenium-tellurium nanorods for efficient water splitting. Nat. Commun. 2019, 10, 5692.

[56]

Ghobrial, S.; Kirk, D. W.; Thorpe, S. J. Amorphous Ni-Nb-Y alloys as hydrogen evolution electrocatalysts. Electrocatalysis 2019, 10, 243–252.

[57]

Thenuwara, A. C.; Dheer, L.; Attanayake, N. H.; Yan, Q. M.; Waghmare, U. V.; Strongin, D. R. Co-Mo-P based electrocatalyst for superior reactivity in the alkaline hydrogen evolution reaction. ChemCatChem 2018, 10, 4832–4837.

[58]

Zhu, Y. A.; Pan, Y.; Dai, W. J.; Lu, T. Dealloying generation of oxygen vacancies in the amorphous nanoporous Ni–Mo–O for superior electrocatalytic hydrogen generation. ACS Appl. Energy Mater. 2020, 3, 1319–1327.

[59]

McEnaney, J. M.; Crompton, J. C.; Callejas, J. F.; Popczun, E. J.; Read, C. G.; Lewis, N. S.; Schaak, R. E. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles. Chem. Commun. 2014, 50, 11026–11028.

[60]

Xu, W. C.; Zhu, S. L.; Liang, Y. Q.; Cui, Z. D.; Yang, X. J.; Inoue, A. A nanoporous metal phosphide catalyst for bifunctional water splitting. J. Mater. Chem. A 2018, 6, 5574–5579.

[61]

Cao, D.; Wang, J. Y.; Xu, H. X.; Cheng, D. J. Growth of highly active amorphous RuCu nanosheets on Cu nanotubes for the hydrogen evolution reaction in wide pH values. Small 2020, 16, 2000924.

[62]

Zeng, M.; Wang, H.; Zhao, C.; Wei, J. K.; Qi, K.; Wang, W. L.; Bai, X. D. Nanostructured amorphous nickel boride for high-efficiency electrocatalytic hydrogen evolution over a broad pH range. ChemCatChem 2016, 8, 708–712.

[63]

Tan, Y. W.; Zhu, F.; Wang, H.; Tian, Y.; Hirata, A.; Fujita, T.; Chen, M. W. Noble-metal-free metallic glass as a highly active and stable bifunctional electrocatalyst for water splitting. Adv. Mater. Interfaces 2017, 4, 1601086.

[64]

Huang, H. W.; Cho, A.; Kim, S.; Jun, H.; Lee, A.; Han, J. W.; Lee, J. Structural design of amorphous CoMoPx with abundant active sites and synergistic catalysis effect for effective water splitting. Adv. Funct. Mater. 2020, 30, 2003889.

[65]

Hu, F.; Zhu, S. L.; Chen, S. M.; Li, Y.; Ma, L.; Wu, T. P.; Zhang, Y.; Wang, C. M.; Liu, C. C.; Yang, X. J. et al. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both alkaline and acidic media. Adv. Mater. 2017, 29, 1606570.

[66]

Cai, W. Z.; Yang, H. B.; Zhang, J. M.; Chen, H. C.; Tao, H. B.; Gao, J. J.; Liu, S.; Liu, W.; Li, X. N.; Liu, B. Amorphous multimetal alloy oxygen evolving catalysts. ACS Materials Lett. 2020, 2, 624–632.

[67]

Yang, Y. S.; Zhuang, L. Z.; Rufford, T. E.; Wang, S. B.; Zhu, Z. H. Efficient water oxidation with amorphous transition metal boride catalysts synthesized by chemical reduction of metal nitrate salts at room temperature. RSC Adv. 2017, 7, 32923–32930.

[68]

Glasscott, M. W.; Pendergast, A. D.; Goines, S.; Bishop, A. R.; Hoang, A. T.; Renault, C.; Dick, J. E. Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis. Nat. Commun. 2019, 10, 2650.

[69]

Li, L. J.; Huang, W. J.; Lei, J. L.; Shang, B.; Li, N. B.; Pan, F. S. Holey nanospheres of amorphous bimetallic phosphide electrodeposited on 3D porous Ni foam for efficient oxygen evolution. Appl. Surf. Sci. 2019, 479, 540–547.

[70]

Zhu, W. J.; Zhu, G. X.; Yao, C. L.; Chen, H.; Hu, J.; Zhu, Y.; Liang, W. F. Porous amorphous FeCo alloys as pre-catalysts for promoting the oxygen evolution reaction. J. Alloys Compd. 2020, 828, 154465.

[71]

Wei, X. Q.; Luo, X.; Xu, Z. K.; Wu, Y.; Wang, H. J.; Gu, W. L.; Zhu, C. Z. Three-dimensional amorphous NiCoFe nanowire@nanosheets catalysts for enhanced oxygen evolution reaction. J. Electrochem. Soc. 2020, 167, 064514.

[72]

Wang, S.; He, P.; Xie, Z. W.; Jia, L. P.; He, M. Q.; Zhang, X. Q.; Dong, F. Q.; Liu, H. H.; Zhang, Y.; Li, C. X. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction. Electrochim. Acta 2019, 296, 644–652.

[73]

Poon, K. C.; Tan, D. C. L.; Vo, T. D. T.; Khezri, B.; Su, H. B.; Webster, R. D.; Sato, H. Newly developed stepwise electroless deposition enables a remarkably facile synthesis of highly active and stable amorphous Pd nanoparticle electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 2014, 136, 5217–5220.

[74]

Wu, X. Q.; Chen, F. Y.; Zhang, N.; Qaseem, A.; Johnston, R. L. A silver–copper metallic glass electrocatalyst with high activity and stability comparable to Pt/C for zinc–air batteries. J. Mater. Chem. A 2016, 4, 3527–3537.

[75]

Ma, Y. J.; Li, H.; Wang, H.; Ji, S.; Linkov, V.; Wang, R. F. Ultrafine amorphous PtNiP nanoparticles supported on carbon as efficiency electrocatalyst for oxygen reduction reaction. J. Power Sources 2014, 259, 87–91.

[76]

Liu, L. Y.; Zhao, X.; Li, R. W.; Su, H.; Zhang, H.; Liu, Q. H. Subnano amorphous Fe-based clusters with high mass activity for efficient electrocatalytic oxygen reduction reaction. ACS Appl. Mater. Interfaces 2019, 11, 41432–41439.

[77]

Xu, L.; Tian, Y. H.; Deng, D. J.; Li, H. P.; Zhang, D.; Qian, J. C.; Wang, S.; Zhang, J. M.; Li, H. N.; Sun, S. H. Cu nanoclusters/FeN4 amorphous composites with dual active sites in N-doped graphene for high-performance Zn-air batteries. ACS Appl. Mater. Interfaces 2020, 12, 31340–31350.

[78]

Duan, Y. X.; Meng, F. L.; Liu, K. H.; Yi, S. S.; Li, S. J.; Yan, J. M.; Jiang, Q. Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies. Adv. Mater. 2018, 30, 1706194.

[79]

Zhang, J. B.; Yin, R. G.; Shao, Q.; Zhu, T.; Huang, X. Q. Oxygen vacancies in amorphous InOx nanoribbons enhance CO2 adsorption and activation for CO2 electroreduction. Angew. Chem., Int. Ed. 2019, 58, 5609–5613.

[80]

Wu, Y. Z.; Zhai, P. L.; Cao, S. Y.; Li, Z. W.; Zhang, B.; Zhang, Y. T.; Nie, X. W.; Sun, L. C.; Hou, J. G. CO2 reduction: Beyond d orbits: Steering the selectivity of electrochemical CO2 reduction via hybridized sp band of sulfur-incorporated porous Cd architectures with dual collaborative sites (Adv. Energy Mater. 45/2020). Adv. Energy Mater. 2020, 10, 2070183.

[81]

Zhou, J. H.; Yuan, K.; Zhou, L.; Guo, Y.; Luo, M. Y.; Guo, X. Y.; Meng, Q. Y.; Zhang, Y. W. Boosting electrochemical reduction of CO2 at a low overpotential by amorphous Ag-Bi-S-O decorated Bi0 nanocrystals. Angew. Chem., Int. Ed. 2019, 58, 14197–14201.

[82]

Li, S. J.; Bao, D.; Shi, M. M.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Amorphizing of au nanoparticles by CeOx-RGO hybrid support towards highly efficient electrocatalyst for N2 reduction under ambient conditions. Adv. Mater. 2017, 29, 1700001.

[83]

Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

[84]

Li, P. X.; Fu, W. Z.; Zhuang, P. Y.; Cao, Y. D.; Tang, C.; Watson, A. B.; Dong, P.; Shen, J. F.; Ye, M. X. Amorphous Sn/crystalline SnS2 nanosheets via in situ electrochemical reduction methodology for highly efficient ambient N2 fixation. Small 2019, 15, 1902535.

[85]

Wang, J.; Huang, B. L.; Ji, Y. J.; Sun, M. Z.; Wu, T.; Yin, R. G.; Zhu, X.; Li, Y. Y.; Shao, Q.; Huang, X. Q. A general strategy to glassy M-Te (M = Ru, Rh, Ir) porous nanorods for efficient electrochemical N2 fixation. Adv. Mater. 2020, 32, 1907112.

[86]

Fang, Z. W.; Wu, P.; Qian, Y. M.; Yu, G. H. Gel-derived amorphous bismuth-nickel alloy promotes electrocatalytic nitrogen fixation via optimizing nitrogen adsorption and activation. Angew. Chem., Int. Ed. 2021, 60, 4275–4281.

[87]

Wang, H.; Zhang, X. T.; Wang, R. F.; Ji, S.; Wang, W.; Wang, Q. Z.; Lei, Z. G. Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation. J. Power Sources 2011, 196, 8000–8003.

[88]

Yin, P. F.; Zhou, M.; Chen, J. Z.; Tan, C. L.; Liu, G. G.; Ma, Q. L.; Yun, Q. B.; Zhang, X.; Cheng, H. F.; Lu, Q. P. et al. Synthesis of palladium-based crystalline@amorphous core-shell nanoplates for highly efficient ethanol oxidation. Adv. Mater. 2020, 32, 2000482.

[89]

Lv, F.; Zhang, W. Y.; Sun, M. Z.; Lin, F. X.; Wu, T.; Zhou, P.; Yang, W. X.; Gao, P.; Huang, B. L.; Guo, S. J. Au clusters on Pd nanosheets selectively switch the pathway of ethanol electrooxidation: Amorphous/crystalline interface matters. Adv. Energy Mater. 2021, 11, 2100187.

[90]

Tao, H. B.; Xu, Y. H.; Huang, X.; Chen, J. Z.; Pei, L. J.; Zhang, J. M.; Chen, J. G.; Liu, B. A general method to probe oxygen evolution intermediates at operating conditions. Joule 2019, 3, 1498–1509.

[91]

Tao, H. B.; Zhang, J. M.; Chen, J. Z.; Zhang, L. P.; Xu, Y. H.; Chen, J. G.; Liu, B. Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 2019, 141, 13803–13811.

[92]

Zhang, J. M.; Tao, H. B.; Kuang, M.; Yang, H. B.; Cai, W. Z.; Yan, Q. Y.; Mao, Q.; Liu, B. Advances in thermodynamic-kinetic model for analyzing the oxygen evolution reaction. ACS Catal. 2020, 10, 8597–8610.

[93]

Liu, M. L.; Zhao, Z. P.; Duan, X. F.; Huang, Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv. Mater. 2019, 31, 1802234.

[94]
Niemantsverdriet, J. W. Spectroscopy in Catalysis: An Introduction, 3rd ed.; John Wiley & Sons: Weinheim, 2007.
[95]

Li, L. Q.; Tang, C.; Xia, B. Q.; Jin, H. Y.; Zheng, Y.; Qiao, S. Z. Two-dimensional mosaic bismuth nanosheets for highly selective ambient electrocatalytic nitrogen reduction. ACS Catal. 2019, 9, 2902–2908.

[96]

Liang, Y. X.; Sun, Y. J.; Wang, X. Y.; Fu, E. G.; Zhang, J.; Du, J. L.; Wen, X. D.; Guo, S. J. High electrocatalytic performance inspired by crystalline/amorphous interface in PtPb nanoplate. Nanoscale 2018, 10, 11357–11364.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 April 2021
Revised: 30 May 2021
Accepted: 16 June 2021
Published: 13 July 2021
Issue date: April 2023

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

This work was supported by the Ministry of Education of Singapore under Tier 1 RG115/18 and RG4/20, and Tier 2 T2EP10120-0009.

Return