Journal Home > Volume 15 , Issue 2

The key challenge for scalable production of hydrogen from water lies in the rational design and preparation of high-performance and earth-abundant electrocatalysts to replace precious metal Pt and IrO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Although atomic M-N-C materials have been extensively studied in heterogeneous catalysis field, the insufficient antioxidant capacity of carbonous substrates hinders their practical application in OER. Developing highly active and stable OER electrocatalysts is the key for electrochemical water splitting. This review presents feasible design strategies for fabricating carbon-free single-site catalysts and their applications in HER/OER and overall water splitting. The constitutive relationships between structure, composition, and catalytic performance for HER and OER are detailly discussed, providing ponderable insights into rationally constructing high-performance HER and OER electrocatalysts. The perspectives on the challenges and future research orientations in single-site catalysts for electrochemical water splitting are suggested.


menu
Abstract
Full text
Outline
About this article

Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions

Show Author's information Jingqi Guan( )Xue BaiTianmi Tang
Institute of Physical Chemistry, College of ChemistryJilin University, 2519 Jiefang RoadChangchun130021China

Abstract

The key challenge for scalable production of hydrogen from water lies in the rational design and preparation of high-performance and earth-abundant electrocatalysts to replace precious metal Pt and IrO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Although atomic M-N-C materials have been extensively studied in heterogeneous catalysis field, the insufficient antioxidant capacity of carbonous substrates hinders their practical application in OER. Developing highly active and stable OER electrocatalysts is the key for electrochemical water splitting. This review presents feasible design strategies for fabricating carbon-free single-site catalysts and their applications in HER/OER and overall water splitting. The constitutive relationships between structure, composition, and catalytic performance for HER and OER are detailly discussed, providing ponderable insights into rationally constructing high-performance HER and OER electrocatalysts. The perspectives on the challenges and future research orientations in single-site catalysts for electrochemical water splitting are suggested.

Keywords: single-atom catalyst, oxygen evolution reaction, water splitting, hydrogen evolution reaction, single-site catalyst

References(141)

1

Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

2

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem. , Int. Ed. 2017, 56, 13944–13960.

3

Han, X. B.; Wang, D. X.; Gracia-Espino, E.; Luo, Y. H.; Tan, Y. Z.; Lu, D. F.; Li, Y. G.; Wågberg, T.; Wang, E. B.; Zheng, L. S. Fe-substituted cobalt-phosphate polyoxometalates as enhanced oxygen evolution catalysts in acidic media. Chin. J. Catal. 2020, 41, 853–857.

4

Li, Y. J.; Sun, Y. J.; Qin, Y. N.; Zhang, W. Y.; Wang, L.; Luo, M. C.; Yang, H.; Guo, S. J. Recent advances on water-splitting electrocatalysis mediated by noble-metal-based nanostructured materials. Adv. Energy Mater. 2020, 10, 1903120.

5

Sun, W. J.; Meng, X. Y.; Xu, C. J.; Yang, J. Y.; Liang, X. M.; Dong, Y. J.; Dong, C. Z.; Ding, Y. Amorphous CoOx coupled carbon dots as a spongy porous bifunctional catalyst for efficient photocatalytic water oxidation and CO2 reduction. Chin. J. Catal. 2020, 41, 1826–1836.

6

Sun, W. J.; Lin, J. Q.; Liang, X. M.; Yang, J. Y.; Ma, B. C.; Ding, Y. Recent advances in catalysts based on molecular cubanes for visible light-driven water oxidation. Acta Phys. Chim. Sin. 2020, 36, 1905025.

7

Zhang, Y.; Zhu, X. J.; Zhang, G. L.; Shi, P. D.; Wang, A. L. Rational catalyst design for oxygen evolution under acidic conditions: Strategies toward enhanced electrocatalytic performance. J. Mater. Chem. A 2021, 9, 5890–5914.

8

Zhang, Y.; Wang, S. X.; Yang, R.; Dai, T. Y.; Zhang, N.; Xi, P. X.; Yan, C. H. Construction of Co9S8/MoS2 heterostructures for enhancing electrocatalytic hydrogen evolution reaction. Acta Chim. Sin. 2020, 78, 1455–1460.

9

Joo, J.; Kim, T.; Lee, J.; Choi, S. I.; Lee, K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv. Mater. 2019, 31, 1806682.

10

Lei, L.; Huang, D. L.; Zhou, C. Y.; Chen, S.; Yan, X. L.; Li, Z. H.; Wang, W. J. Demystifying the active roles of NiFe-based oxides/ (oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 2020, 408, 213177.

11

Zheng, M.; Ding, Y.; Yu, L.; Du, X. Q.; Zhao, Y. K. In situ grown pristine cobalt sulfide as bifunctional photocatalyst for hydrogen and oxygen evolution. Adv. Funct. Mater. 2017, 27, 1605846.

12

Guo, S. L.; Yuan, H.; Luo, W.; Liu, X. Q.; Zhang, X. T.; Jiang, H. Q.; Liu, F.; Cheng, G. J. Isolated atomic catalysts encapsulated in MOF for ultrafast water pollutant treatment. Nano Res. 2021, 14, 1287–1293.

13

Tian, S. B.; Hu, M.; Xu, Q.; Gong, W. B.; Chen, W. X.; Yang, J. R.; Zhu, Y. Q.; Chen, C.; He, J.; Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

14

Li, J.; Li, Y. D.; Zhang, T. Recent progresses in the research of single-atom catalysts. Sci. China Mater. 2020, 63, 889–891.

15

Jiang, H. N.; Zhang, P.; Wang, X. G.; Gong, Y. J. Synthesis of magnetic two-dimensional materials by chemical vapor deposition. Nano Res. 2021, 14, 1789–1801.

16

Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

17

Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

18

Zhou, M.; Bao, S. J.; Bard, A. J. Probing size and substrate effects on the hydrogen evolution reaction by single isolated Pt atoms, atomic clusters, and nanoparticles. J. Am. Chem. Soc. 2019, 141, 7327–7332.

19

Zhang, Q. Q.; Guan, J. Q. Single-atom catalysts for electrocatalytic applications. Adv. Funct. Mater. 2020, 30, 2000768.

20

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

21

Wang, Y.; Mao, J.; Meng, X. G.; Yu, L.; Deng, D. H.; Bao, X. H. Catalysis with two-dimensional materials confining single atoms: Concept, design, and applications. Chem. Rev. 2019, 119, 1806–1854.

22

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

23

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

24
Song, J. J.; Yang, Y. X.; Liu, S. J.; Li, L.; Yu, N.; Fan, Y. T.; Chen, Z. M.; Kuai, L.; Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res., in press, DOI: 10.1007/s12274-021-3443-7.https://doi.org/10.1007/s12274-021-3443-7
DOI
25

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

26

He, X. H.; He, Q.; Deng, Y. C.; Peng, M.; Chen, H. Y.; Zhang, Y.; Yao, S. Y.; Zhang, M. T.; Xiao, D. Q.; Ma, D. et al. A versatile route to fabricate single atom catalysts with high chemoselectivity and regioselectivity in hydrogenation. Nat. Commun. 2019, 10, 3663.

27

Gao, C.; Low, J.; Long, R.; Kong, T. T.; Zhu, J. F.; Xiong, Y. J. Single-atom photocatalysts: Fundamentals and applications. Chem. Rev. 2020, 120, 12175–12216.

28

Sun, T. T.; Xu, L. B.; Wang, D. S.; Li, Y. D. Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion. Nano Res. 2019, 12, 2067–2080.

29

Gong, N. Q.; Ma, X. W.; Ye, X. X.; Zhou, Q. F.; Chen, X. A.; Tan, X. L.; Yao, S. K.; Huo, S. D.; Zhang, T. B.; Chen, S. Z. et al. Carbon-dot-supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol. 2019, 14, 379–387.

30

Fei, H. L.; Dong, J. C.; Arellano-Jiménez, M. J.; Ye, G. L.; Kim, N. D.; Samuel, E. L. G.; Peng, Z. W.; Zhu, Z.; Qin, F.; Bao, J. M. et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat. Commun. 2015, 6, 8668.

31

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

32

Guan, J. Q.; Duan, Z. Y.; Zhang, F. X.; Kelly, S. D.; Si, R.; Dupuis, M.; Huang, Q.; Chen, J. Q.; Tang, C. H.; Li, C. Water oxidation on a mononuclear manganese heterogeneous catalyst. Nat. Catal. 2018, 1, 870–877.

33

Fei, H. L.; Dong, J. C.; Chen, D. L.; Hu, T. D.; Duan, X. D.; Shakir, I.; Huang, Y.; Duan, X. F. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 2019, 48, 5207–5241.

34

Zhang, Q. Q.; Guan, J. Q. Atomically dispersed catalysts for hydrogen/oxygen evolution reactions and overall water splitting. J. Power Sources 2020, 471, 228446.

35

Li, J. Z.; Chen, M. J.; Cullen, D. A.; Hwang, S.; Wang, M. Y.; Li, B. Y.; Liu, K. X.; Karakalos, S.; Lucero, M.; Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

36

Zhang, Y. K.; Wu, C. Q.; Jiang, H. L.; Lin, Y. X.; Liu, H. J.; He, Q.; Chen, S. M.; Duan, T.; Song, L. Atomic iridium incorporated in cobalt hydroxide for efficient oxygen evolution catalysis in neutral electrolyte. Adv. Mater. 2018, 30, 1707522.

37

Cai, C.; Wang, M. Y.; Han, S. B.; Wang, Q.; Zhang, Q.; Zhu, Y. M.; Yang, X. M.; Wu, D. J.; Zu, X. T.; Sterbinsky, G. E. et al. Ultrahigh oxygen evolution reaction activity achieved using Ir single atoms on amorphous CoOx nanosheets. ACS Catal. 2021, 11, 123–130.

38

Wang, Q.; Zhao, Z. L.; Dong, S.; He, D. S.; Lawrence, M. J.; Han, S. B.; Cai, C.; Xiang, S. H.; Rodriguez, P.; Xiang, B. et al. Design of active nickel single-atom decorated MoS2 as a pH-universal catalyst for hydrogen evolution reaction. Nano Energy 2018, 53, 458–467.

39

Zhang, J. M.; Xu, X. P.; Yang, L.; Cheng, D. J.; Cao, D. P. Single- atom Ru doping induced phase transition of MoS2 and S vacancy for hydrogen evolution reaction. Small Methods 2019, 3, 1900653.

40

Meng, X. Y.; Ma, C.; Jiang, L. Z.; Si, R.; Meng, X. G.; Tu, Y. C.; Yu, L.; Bao, X. H.; Deng, D. H. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew. Chem., Int. Ed. 2020, 59, 10502–10507.

41

Lau, T. H. M.; Lu, X. W.; Kulhavy, J.; Wu, S.; Lu, L. L.; Wu, T. S.; Kato, R.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Transition metal atom doping of the basal plane of MoS2 monolayer nanosheets for electrochemical hydrogen evolution. Chem. Sci. 2018, 9, 4769–4776.

42

Duan, H. L.; Wang, C.; Li, G. N.; Tan, H.; Hu, W.; Cai, L.; Liu, W.; Li, N.; Ji, Q. Q.; Wang, Y. et al. Single-atom-layer catalysis in a MoS2 monolayer activated by long-range ferromagnetism for the hydrogen evolution reaction: Beyond single-atom catalysis. Angew. Chem. , Int. Ed. 2021, 60, 7251–7258.

43

Lin, C.; Zhao, Y. H.; Zhang, H. J.; Xie, S. H.; Li, Y. F.; Li, X. P.; Jiang, Z.; Liu, Z. P. Accelerated active phase transformation of NiO powered by Pt single atoms for enhanced oxygen evolution reaction. Chem. Sci. 2018, 9, 6803–6812.

44

Liu, D. B.; Ding, S. Q.; Wu, C. Q.; Gan, W.; Wang, C. D.; Cao, D. F.; Rehman, Z. U.; Sang, Y.; Chen, S. M.; Zheng, X. S. et al. Synergistic effect of an atomically dual-metal doped catalyst for highly efficient oxygen evolution. J. Mater. Chem. A 2018, 6, 6840–6846.

45

Chung, H. T.; Cullen, D. A.; Higgins, D.; Sneed, B. T.; Holby, E. F.; More, K. L.; Zelenay, P. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 2017, 357, 479–484.

46

Biesinger, M. C.; Payne, B. P.; Lau, L. W. M.; Gerson, A.; Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332.

47

Qi, K.; Cui, X. Q.; Gu, L.; Yu, S. S.; Fan, X. F.; Luo, M. C.; Xu, S.; Li, N. B.; Zheng, L. R.; Zhang, Q. H. et al. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat. Commun. 2019, 10, 5231.

48

Li, Y.; Dong, Z.; Jiao, L. F. Multifunctional transition metal-based phosphides in energy-related electrocatalysis. Adv. Energy Mater. 2020, 10, 1902104.

49

Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater. 2017, 29, 1605838.

50

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

51

Skúlason, E.; Tripkovic, V.; Björketun, M. E.; Gudmundsdóttir, S.; Karlberg, G.; Rossmeisl, J.; Bligaard, T.; Jónsson, H.; Nørskov, J. K. Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations. J. Phys. Chem. C 2010, 114, 18182–18197.

52

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

53

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Norskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

54

Burke, M. S.; Kast, M. G.; Trotochaud, L.; Smith, A. M.; Boettcher, S. W. Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: The role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 2015, 137, 3638–3648.

55

Casalongue, H. G. S.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem. , Int. Ed. 2014, 53, 7169–7172.

56

Pfeifer, V.; Jones, T. E.; Vélez, J. J. V.; Arrigo, R.; Piccinin, S.; Hävecker, M.; Knop-Gericke, A.; Schlögl, R. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 2017, 8, 2143–2149.

57

Minguzzi, A.; Lugaresi, O.; Achilli, E.; Locatelli, C.; Vertova, A.; Ghigna, P.; Rondinini, S. Observing the oxidation state turnover in heterogeneous iridium-based water oxidation catalysts. Chem. Sci. 2014, 5, 3591–3597.

58

Bai, L. C.; Hsu, C. S.; Alexander, D. T. L.; Chen, H. M.; Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

59

Zhao, Z. J.; Liu, S. H.; Zha, S. J.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

60

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

61

Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

62

Chen, J. Z.; Liu, G. G.; Zhu, Y. Z.; Su, M.; Yin, P. F.; Wu, X. J.; Lu, Q. P.; Tan, C. L.; Zhao, M. T.; Liu, Z. Q. et al. Ag@MoS2 core-shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 2020, 142, 7161–7167.

63

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

64

Duan, H. L.; Liu, W.; Guo, P.; Tang, F. M.; Yan, W. S.; Yao, T. Identifying the single active site in MoS2-based hydrogen evolution electrocatalyst by XAFS technique. Radiat. Phys. Chem. 2020, 175, 108151.

65

Zhang, H. B.; Yu, L.; Chen, T.; Zhou, W.; Lou, X. W. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2018, 28, 1807086.

66

Hao, Y.; Wang, Y. T.; Xu, L. C.; Yang, Z.; Liu, R. P.; Li, X. Y. 1T-MoS2 monolayer doped with isolated Ni atoms as highly active hydrogen evolution catalysts: A density functional study. Appl. Surf. Sci. 2019, 469, 292–297.

67

Ji, L.; Yan, P. F.; Zhu, C. H.; Ma, C. Y.; Wu, W. Z.; Wei, C.; Shen, Y. L.; Chu, S. Q.; Wang, J. O.; Du, Y. et al. One-pot synthesis of porous 1T-phase MoS2 integrated with single-atom Cu doping for enhancing electrocatalytic hydrogen evolution reaction. Appl. Catal. B 2019, 251, 87–93.

68

Cui, Z. T.; Sa, R. J.; Du, W.; Xiao, C. W.; Li, Q. H.; Ma, Z. J. Theoretical screening of group ⅢA-VIIA elements doping to promote hydrogen evolution of MoS2 basal plane. Appl. Surf. Sci. 2021, 542, 148535.

69

Lau, T. H. M.; Wu, S.; Kato, R.; Wu, T. S.; Kulhavý, J.; Mo, J. Y.; Zheng, J. W.; Foord, J. S.; Soo, Y. L.; Suenaga, K. et al. Engineering monolayer 1T-MoS2 into a bifunctional electrocatalyst via sonochemical doping of isolated transition metal atoms. ACS Catal. 2019, 9, 7527–7534.

70

Wu, C. Q.; Li, D. D.; Ding, S. Q.; Rehman, Z. U.; Liu, Q.; Chen, S. M.; Zhang, B.; Song, L. Monoatomic platinum-anchored metallic MoS2: Correlation between surface dopant and hydrogen evolution. J. Phys. Chem. Lett. 2019, 10, 6081–6087.

71

Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

72

Han, A.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

73

Yang, Y. J.; Liu, J.; Liu, F.; Wang, Z.; Wu, D. W. FeS2-anchored transition metal single atoms for highly efficient overall water splitting: A DFT computational screening study. J. Mater. Chem. A 2021, 9, 2438–2447.

74

Wang, C. L.; Wu, X.; Zhang, X.; Mu, G.; Li, P. L.; Luo, C.; Xu, H. J.; Di, Z. F. Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction. Appl. Phys. Lett. 2020, 116, 223901.

75

Wang, Y. W.; Wan, J.; Tian, W.; Hou, Z. F.; Gu, X.; Wang, Y. Theoretical screening of VSe2 as support for enhanced electrocatalytic performance of transition-metal single atoms. J. Colloid Interface Sci. 2021, 590, 210–218.

76

Liu, Z. L.; Lei, B.; Zhu, Z. L.; Tao, L.; Qi, J.; Bao, D. L.; Wu, X.; Huang, L.; Zhang, Y. Y.; Lin, X. et al. Spontaneous formation of 1D pattern in monolayer VSe2 with dispersive adsorption of Pt atoms for HER catalysis. Nano Lett. 2019, 19, 4897–4903.

77

Shang, H. S.; Zhao, Z. H.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Li, A.; Dong, J. C.; An, P. F.; Zheng, L. R.; Chen, W. X. Dynamic evolution of isolated Ru-FeP atomic interface sites for promoting the electrochemical hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 22607–22612.

78

He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

79

Zhang, L. H.; Han, L. L.; Liu, H. X.; Liu, X. J.; Luo, J. Potential- cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew. Chem., Int. Ed. 2017, 56, 13694–13698.

80

Ye, S. H.; Xiong, W.; Liao, P.; Zheng, L. R.; Ren, X. Z.; He, C. X.; Zhang, Q. L.; Liu, J. H. Removing the barrier to water dissociation on single-atom Pt sites decorated with a CoP mesoporous nanosheet array to achieve improved hydrogen evolution. J. Mater. Chem. A 2020, 8, 11246–11254.

81

Wu, J.; Han, N. N.; Ning, S. C.; Chen, T.; Zhu, C. Y.; Pan, C. X.; Wu, H. J.; Pennycook, S. J.; Guan, C. Single-atom tungsten-doped CoP nanoarrays as a high-efficiency pH-universal catalyst for hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 14825–14832.

82

Lai, W. H.; Zhang, L. F.; Hua, W. B.; Indris, S.; Yan, Z. C.; Hu, Z.; Zhang, B. W.; Liu, Y. N.; Wang, L.; Liu, M. et al. General π-electron- assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873.

83

Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

84

Li, D.; Chen, X. F.; Lv, Y. Z.; Zhang, G. Y.; Huang, Y.; Liu, W.; Li, Y.; Chen, R. S.; Nuckolls, C.; Ni, H. W. An effective hybrid electrocatalyst for the alkaline HER: Highly dispersed Pt sites immobilized by a functionalized NiRu-hydroxide. Appl. Catal. B 2020, 269, 118824.

85

Gao, J. J.; Du, P.; Zhang, Q. H.; Shen, X.; Chiang, F. K.; Wen, Y. R.; Lin, X.; Liu, X. J.; Qiu, H. J. Platinum single atoms/clusters stabilized in transition metal oxides for enhanced electrocatalysis. Electrochim. Acta 2019, 297, 155–162.

86

Zhou, K. L.; Wang, C. C.; Wang, Z. L.; Han, C. B.; Zhang, Q. Q.; Ke, X. X.; Liu, J. B.; Wang, H. Seamlessly conductive Co(OH)2 tailored atomically dispersed Pt electrocatalyst with a hierarchical nanostructure for an efficient hydrogen evolution reaction. Energy Environ. Sci. 2020, 13, 3082–3092.

87

Liu, T. T.; Gao, W. B.; Wang, Q. Q.; Dou, M. L.; Zhang, Z. P.; Wang, F. Selective loading of atomic platinum on a RuCeOx support enables stable hydrogen evolution at high current densities. Angew. Chem. , Int. Ed. 2020, 59, 20423–20427.

88

Cheng, X.; Lu, Y.; Zheng, L. R.; Cui, Y. T.; Niibe, M.; Tokushima, T.; Li, H. Y.; Zhang, Y. F.; Chen, G.; Sun, S. R. et al. Charge redistribution within platinum-nitrogen coordination structure to boost hydrogen evolution. Nano Energy 2020, 73, 104739.

89

Li, M.; Ma, Q.; Zi, W.; Liu, X. J.; Zhu, X. J.; Liu, S. Z. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction. Sci. Adv. 2015, 1, e1400268.

90

Liao, W. C.; Yau, S. Au(111)-supported Pt monolayer as the most active electrocatalyst toward hydrogen oxidation and evolution reactions in sulfuric acid. J. Phys. Chem. C 2017, 121, 19218–19225.

91

Chao, T. T.; Luo, X.; Chen, W. X.; Jiang, B.; Ge, J. J.; Lin, Y.; Wu, G.; Wang, X. Q.; Hu, Y. M.; Zhuang, Z. B. et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew. Chem. , Int. Ed. 2017, 56, 16047–16051.

92

Chen, C. H.; Wu, D. Y.; Li, Z.; Zhang, R.; Kuai, C. G.; Zhao, X. R.; Dong, C. K.; Qiao, S. Z.; Liu, H.; Du, X. W. Ruthenium-based single-atom alloy with high electrocatalytic activity for hydrogen evolution. Adv. Energy Mater. 2019, 9, 1803913.

93

Yang, Y.; Xue, X. X.; Chen, Q. J.; Feng, Y. X. Doping single transition metal atom into PtTe sheet for catalyzing nitrogen reduction and hydrogen evolution reactions. J. Chem. Phys. 2019, 151, 144710.

94

Li, Y. P.; Chen, S. M.; Long, R.; Ju, H. X.; Wang, Z. W.; Yu, X. X.; Gao, F. Y.; Cai, Z. J.; Wang, C. M.; Xu, Q. et al. Near-surface dilution of trace Pd atoms to facilitate Pd-H bond cleavage for giant enhancement of electrocatalytic hydrogen evolution. Nano Energy 2017, 34, 306–312.

95

Feng, Y. Y.; Guan, Y. X.; Zhang, H. J.; Huang, Z. Y.; Li, J.; Jiang, Z. Q.; Gu, X.; Wang, Y. Selectively anchoring Pt single atoms at hetero-interfaces of γ-Al2O3/NiS to promote the hydrogen evolution reaction. J. Mater. Chem. A 2018, 6, 11783–11789.

96

Wang, L. G.; Duan, X. X.; Liu, X. J.; Gu, J.; Si, R.; Qiu, Y.; Qiu, Y. M.; Shi, D. E.; Chen, F. H.; Sun, X. M. et al. Atomically dispersed Mo supported on metallic Co9S8 nanoflakes as an advanced noble- metal-free bifunctional water splitting catalyst working in universal pH conditions. Adv. Energy Mater. 2020, 10, 1903137.

97

Dai, J.; Zhu, Y. L.; Tahini, H. A.; Lin, Q.; Chen, Y.; Guan, D. Q.; Zhou, C.; Hu, Z. W.; Lin, H. J.; Chan, T. S. et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657.

98

Xu, H. T.; Liu, T. Y.; Bai, S. X.; Li, L. G.; Zhu, Y. M.; Wang, J.; Yang, S. Z.; Li, Y. F.; Shao, Q.; Huang, X. Q. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting. Nano Lett. 2020, 20, 5482–5489.

99

Jiang, K.; Liu, B. Y.; Luo, M.; Ning, S. C.; Peng, M.; Zhao, Y.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat. Commun. 2019, 10, 1743.

100

Babu, D. D.; Huang, Y. Y.; Anandhababu, G.; Wang, X.; Si, R.; Wu, M. X.; Li, Q. H.; Wang, Y. B.; Yao, J. N. Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. J. Mater. Chem. A 2019, 7, 8376–8383.

101

Pearson, R. G. Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740.

102

Xing, Y. L.; Ku, J. G.; Fu, W.; Wang, L. Z.; Chen, H. H. Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction. Chem. Eng. J. 2020, 395, 125149.

103

Yin, J.; Jin, J.; Lu, M.; Huang, B. L.; Zhang, H.; Peng, Y.; Xi, P. X.; Yan, C. H. Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media. J. Am. Chem. Soc. 2020, 142, 18378–18386.

104

Zhou, Y. C.; López, N. The role of Fe species on NiOOH in oxygen evolution reactions. ACS Catal. 2020, 10, 6254–6261.

105

Zhang, S.; Huang, B. L.; Wang, L. G.; Zhang, X. Y.; Zhu, H. S.; Zhu, X. Q.; Li, J.; Guo, S. J.; Wang, E. K. Boosted oxygen evolution reactivity via atomic iron doping in cobalt carbonate hydroxide hydrate. ACS Appl. Mater. Interfaces 2020, 12, 40220–40228.

106

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

107

Chen, J. Y. C.; Dang, L. N.; Liang, H. F.; Bi, W. L.; Gerken, J. B.; Jin, S.; Alp, E. E.; Stahl, S. S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mossbauer spectroscopy. J. Am. Chem. Soc. 2015, 137, 15090–15093.

108

Zhu, K. Y.; Zhu, X. F.; Yang, W. S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts. Angew. Chem., Int. Ed. 2019, 58, 1252–1265.

109

Hu, Y. D.; Luo, G.; Wang, L. G.; Liu, X. K.; Qu, Y. T.; Zhou, Y. S.; Zhou, F. Y.; Li, Z. J.; Li, Y. F.; Yao, T. et al. Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 2021, 11, 2002816.

110

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

111

Dong, C. L.; Zhang, X. L.; Xu, J.; Si, R.; Sheng, J.; Luo, J.; Zhang, S. N.; Dong, W. J.; Li, G. B.; Wang, W. C. et al. Ruthenium-doped cobalt-chromium layered double hydroxides for enhancing oxygen evolution through regulating charge transfer. Small 2020, 16, 1905328.

112

Baeumer, C.; Li, J.; Lu, Q. Y.; Liang, A. Y. L.; Jin, L.; Martins, H. P.; Duchoň, T.; Glöß, M.; Gericke, S. M.; Wohlgemuth, M. A. et al. Tuning electrochemically driven surface transformation in atomically flat LaNiO3 thin films for enhanced water electrolysis. Nat. Mater. 2021, 20, 674–682.

113

Harzandi, A. M.; Shadman, S.; Nissimagoudar, A. S.; Kim, D. Y.; Lim, H. D.; Lee, J. H.; Kim, M. G.; Jeong, H. Y.; Kim, Y.; Kim, K. S. Ruthenium core-shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 2021, 11, 2003448.

114

Guan, J. Q.; Ding, C. M.; Chen, R. T.; Huang, B. K.; Zhang, X. W.; Fan, F. T.; Zhang, F. X.; Li, C. CoOx nanoparticle anchored on sulfonated-graphite as efficient water oxidation catalyst. Chem. Sci. 2017, 8, 6111–6116.

115

Liu, C.; Qian, J.; Ye, Y. F.; Zhou, H.; Sun, C. J.; Sheehan, C.; Zhang, Z. Y.; Wan, G.; Liu, Y. S.; Guo, J. H. et al. Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface. Nat. Catal. 2021, 4, 36–45.

116

Jiang, K.; Luo, M.; Peng, M.; Yu, Y. Q.; Lu, Y. R.; Chan, T. S.; Liu, P.; de Groot, F. M. F.; Tan, Y. W. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 2020, 11, 2701.

117

Cai, C.; Han, S. B.; Wang, Q.; Gu, M. Direct observation of yolk-shell transforming to gold single atoms and clusters with superior oxygen evolution reaction efficiency. ACS Nano 2019, 13, 8865–8871.

118

He, F.; Liu, Y. J.; Cai, Q. H.; Zhao, J. X. Size-dependent electrocatalytic activity of ORR/OER on palladium nanoclusters anchored on defective MoS2 monolayers. New J. Chem. 2020, 44, 16135–16143.

119

Wohlfahrt-Mehrens, M.; Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 1987, 237, 251–260.

120

Binninger, T.; Mohamed, R.; Waltar, K.; Fabbri, E.; Levecque, P.; Kötz, R.; Schmidt, T. J. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 2015, 5, 12167.

121

Grimaud, A.; Díaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

122

Bai, L.; Duan, Z. Y.; Wen, X. D.; Si, R.; Zhang, Q. Q.; Guan, J. Q. Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 2019, 9, 9897–9904.

123

Yao, Y. C.; Hu, S. L.; Chen, W. X.; Huang, Z. Q.; Wei, W. C.; Yao, T.; Liu, R. R.; Zang, K. T.; Wang, X. Q.; Wu, G. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat. Catal. 2019, 2, 304–313.

124

Mannix, A. J.; Zhou, X. F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X. L.; Fisher, B. L.; Santiago, U.; Guest, J. R. et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 1513–1516.

125

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

126

Wu, R. Y.; Drozdov, I. K.; Eltinge, S.; Zahl, P.; Ismail-Beigi, S.; Božović, I.; Gozar, A. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 2019, 14, 44–49.

127

Kiraly, B.; Liu, X. L.; Wang, L. Q.; Zhang, Z. H.; Mannix, A. J.; Fisher, B. L.; Yakobson, B. I.; Hersam, M. C.; Guisinger, N. P. Borophene synthesis on Au(111). ACS Nano 2019, 13, 3816–3822.

128

Banerjee, A.; Chakraborty, S.; Jena, N. K.; Ahuja, R. Scrupulous probing of bifunctional catalytic activity of borophene monolayer: Mapping reaction coordinate with charge transfer. ACS Appl. Energy Mater. 2018, 1, 3571–3576.

129

Mohajeri, A.; Dashti, N. L. Cooperativity in bimetallic SACs: An efficient strategy for designing bifunctional catalysts for overall water splitting. J. Phys. Chem. C 2019, 123, 30972–30980.

130

Singh, Y.; Back, S.; Jung, Y. Computational exploration of borophane- supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts. Phys. Chem. Chem. Phys. 2018, 20, 21095–21104.

131

Xu, X. W.; Si, R. H.; Dong, Y.; Li, L. L.; Zhang, M. H.; Wu, X. Y.; Zhang, J.; Fu, K.; Guo, Y.; He, Y. Y. Borophene-supported single transition metal atoms as potential oxygen evolution/reduction electrocatalysts: A density functional theory study. J. Mol. Model. 2021, 27, 67.

132

Zeng, H. H.; Liu, X. Y.; Chen, F. B.; Chen, Z. G.; Fan, X. L.; Lau, W. Single atoms on a nitrogen-doped boron phosphide monolayer: A new promising bifunctional electrocatalyst for ORR and OER. ACS Appl. Mater. Interfaces 2020, 12, 52549–52559.

133

Liu, N.; Duan, Z. Y.; Zhang, Q. Q.; Guan, J. Q. Insights into active species of ultrafine iridium oxide nanoparticle electrocatalysts in hydrogen/oxygen evolution reactions. Chem. Eng. J. 2021, 419, 129567.

134

Ling, C. Y.; Shi, L.; Ouyang, Y. X.; Zeng, X. C.; Wang, J. L. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett. 2017, 17, 5133–5139.

135

Xu, X. P.; Xu, H. X.; Cheng, D. J. Design of high-performance MoS2 edge supported single-metal atom bifunctional catalysts for overall water splitting via a simple equation. Nanoscale 2019, 11, 20228–20237.

136

Hwang, J.; Noh, S. H.; Han, B. Design of active bifunctional electrocatalysts using single atom doped transition metal dichalcogenides. Appl. Surf. Sci. 2019, 471, 545–552.

137

Wang, Y.; Zheng, P.; Li, M. X.; Li, Y. R.; Zhang, X.; Chen, J.; Fang, X.; Liu, Y. J.; Yuan, X. L.; Dai, X. P. et al. Interfacial synergy between dispersed Ru sub-nanoclusters and porous NiFe layered double hydroxide on accelerated overall water splitting by intermediate modulation. Nanoscale 2020, 12, 9669–9679.

138

Xiong, D. H.; Zhang, Q. Q.; Li, W.; Li, J. J.; Fu, X. L.; Cerqueira, M. F.; Alpuim, P.; Liu, L. F. Atomic-layer-deposited ultrafine MoS2 nanocrystals on cobalt foam for efficient and stable electrochemical oxygen evolution. Nanoscale 2017, 9, 2711–2717.

139

Wang, Q.; Huang, X.; Zhao, Z. L.; Wang, M. Y.; Xiang, B.; Li, J.; Feng, Z. X.; Xu, H.; Gu, M. Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7425–7433.

140

Zhang, X. P.; Dong, C. L.; Wang, Y. Q.; Chen, J.; Arul, K. T.; Diao, Z. D.; Fu, Y. M.; Li, M. T.; Shen, S. H. Regulating crystal structure and atomic arrangement in single-component metal oxides through electrochemical conversion for efficient overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 57038–57046.

141

Peng, X. Y.; Zhao, S. Z.; Mi, Y. Y.; Han, L. L.; Liu, X. J.; Qi, D. F.; Sun, J. Q.; Liu, Y. F.; Bao, H. H.; Zhuo, L. C. et al. Trifunctional single-atomic Ru sites enable efficient overall water splitting and oxygen reduction in acidic media. Small 2020, 16, 2002888.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2021
Revised: 09 June 2021
Accepted: 14 June 2021
Published: 07 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099), and Natural Science Foundation of Jilin Province (No. 20180101291JC).

Return