Journal Home > Volume 15 , Issue 2

The sluggish reaction kinetics in oxygen reduction reaction (ORR) is one of the bottlenecks in next generation energy conversion systems. The integrated design strategy based on simultaneously constructing active sites and forming porous carbon network will address this concern by facilitating charge exchange, mass transfer and electron transportation. In this article, a three-dimensional integrated air electrode (Co–N@ACS) containing Co–N sites and hierarchically porous carbon is fabricated via growth of Co-doped ZIF-8 in activated wood substrate and synchronous pyrolysis. The optimized integrated air electrodes exhibit ultrahigh ORR activity (E1/2 = 0.86 V). Co–N sites provide outstanding ORR activity, and hierarchically porous structures facilitate oxygen diffusion and electrolyte penetration. Aqueous zinc-air battery assembled with Co–N@ACS possesses open-circuit voltage of 1.46 V, peak power density of 155 mW·cm-2 and long-term stability of 540 cycles (180 h). Solid-state zinc-air battery assembled with Co–N@ACS shows open-circuit voltage up to 1.36 V and low charge-discharge voltage gap (0.8 V). This design strategy paves the way for the conversion of wood biomass to integrated air electrodes and catalytically active carbon for next generation energy storage and conversion devices.

File
12274_2021_3678_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 10 April 2021
Revised: 02 June 2021
Accepted: 14 June 2021
Published: 07 August 2021
Issue date: February 2022

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Acknowledgements

Acknowledgements

The support from the National Natural Science Foundation of China (Nos. 31901272 and 22075254) is acknowledged. All the authors thank the Communist Party of China.

Return